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Q.ne, of the central open questions of artificial intelligence is concerned with
v eombmmg ) expresswe knowledge representatlpn formalisms such as relational
mld-ﬁfst—er(fer 100“1(‘ “with [11) }llnelpTed probablllstle and statistical approaches

to inference and learning. Why? Here are some reasons:
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1. The fields of knowledge representatlcn and mcluetlve logle programming
stress the 1mpor‘tance ofré'[af'f)na]@nd logical represent ationS that provide Lﬂ‘c GP " f( yene e

the flexibility and modularity to model Targe domains. “They also high- cnmps h |
light the importance O@akmg general statements} rather than making ':’
e wor

statements for every single aspect of T 7 separately.

2. The fields of statistical learning and uncertainty in artificial intelligence ’{éY
emphasize that a agents that operate in the reaf world must deal with un- ' ('O.J.‘ h°m

certainty. An agent typically receives only noisy or limited information
y ypically ¥ noisy, att bufe=alue

about the world; actions are often non-deterministic; and an agent

to take care of unpredictable events. PI‘Obabllltj theor;zr provides a sound J.m D-{a_f’.( | rj

mathematical foundation for inference akncr[eeurnmcr under uncertainty.

@Maehine learning, in general, argues that an agent needs to be capable of

improving its performance through experience.

Bands M 8 (2) "oqether 1 Gn aﬂ;\\m;hm.
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Definition 19 Statistical relational learning deals with machine learning and ]n z.
data mining in relational domains where observations may|be missing, partially f
observed, and/or noisy.
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Employing relational and logical abstraction within statistical learning has three
advantages:

1. Variables, i.e., placeholders for entities allow one to make abstraction of ?
specific entities.

2. Unification allows one to share information among entities.

3. In many applications, there is a rich background theory available, which
can efficiently and elegantly be represented as sets of general regularities.
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Definition 20 Given a set of positive and negative examples ET and £~ ov S!H‘rj
fi‘d&i»j e

some language Ly, a background theory B, in the form of a set o

clauses, a hypothesis language L, which specifies the clauses that are allowed

in hypotheses, and a covers relation covers(e, H,B) € {0,1}, which basically

returns the classification of an example e with respect to H and B, find a hy-

at covers (with respect ta the background theesy 3) allepositive
pletenessd wird mome=of the negative examples in E~ (con-

pothesis H in 'H
examples in €%
sistency).
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i.e. a definite clause program) from a set of positive and negative examples f -
elve

and €7, 7‘.0‘““?\‘.... ' R: Boes 6n IL? system |

Consider leenimg aldefinition foy Ehe,ll%ughfgﬁﬂ&)ﬁ(hg@te,aj—&, Taiﬁé 4 .&/mLI\SJ
clauses with head predicates over Daughter /2, given the following facts as learn- —_—
ing examples: N Al

Er:  Daughter(dorothy, ann).
Daughter(dorothy, brian).
E7:  Daughter
Daughter(rex, brian).

(
(rex,ann).
(
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)
Additionally, we have some general knowledge called ba; k*@f?ﬂd knowledge
B, which describes the tamily relationships and sex of each™person:

Mother(ann,dorothy). Female(dorothy). F 310‘,’!‘:{3”&?1). ;-’ T"J to
Mother(ann, rex). Father(brian, dorothy). Father(brian,rex). ,; C@nmamon
| Sense
From this information, we could induce the following H: ' kﬂ dldl dJ )
Daughter(C, P) -E-— Female(C'), Mother(P,C'). -7
Daughter(C,P) _: — Female(C), Father(P,C).

¢r
which perfectly explains the examples in terms of the background knowledge,

i.c., ET are entaile@) by H together @IS, but £~ are not entailed.
——
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the probabilistic case. The probabilistic ILP settings make abstraction
of specific probabilistic relational and first order logical representations
and inference and learning algorithms yielding general statistical relational
learning settings.
~— o
2. Memy JLP concepts and techniques such as more-general-than, refinement
operators, least general generalization (lub), and greatest lower bound (glb)
can be reused. Therefore, many ILP learning algorithms such as Quinlans
FOIL and De Raedt and Dehaspes Claudien can easily be adapted.

3. The ILP perspective highlights the importance of background knowledge
within statistical relational learning. T'he research on ILP and on artificial
intelligence in general has shown that background knowledge is the key to
success in many applications.

4. An ILP approach should make statistical relational learning more intuitive
to those coming from an ILP background and should cross-fertilize ideas
developed in ILP and statistical learning- . — —- -
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Probabihste [LP Sciing
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1. Probabilistic C [azwes*[& lauses in H and B are annotated with probabilistic

el - e

information, and Hére, we use the following probability nota.tlona.')V\-' ith
X, we denote a (random) variable. Furthermore, = denotes a state and
X (resp. x) a set of variables (resp. states). We will use Pr to denote a
probability distribution, e.g., Pr(x), and p to denote a probability value,
e.g., p(X = x) and p(X = z).

2. Probabilistic (Oz'ere'@he covers relation becomes probabilistic)) A prob-
abilistic covers relation softens the hard covers relation employed in tra-
ditional ILP and is defined as the probability of an example given the
hypothesis and the background theory. A probabilistic covers relation
takes as arguments an example e, a hypothesis H and poqaihl\' the ha(k—
ground theory B, and returns the probability mlue@ﬁ of

the example e given H and B, i.e., covers(e, H,B) = Pr ( E\Ii-f’)/[
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Definition 21 Given a gzrobabilistéc—log?ﬂcal language Ly and a set & :c')jf er-
amples over some lanquage Ly, Find The hypothesis H- in Ly that mazimizes

PEH ). NIF peb
e P2

Under the usual z.72.d. assumption, z.e., examples are sampled independently
from identical distributions, this results in the maximization of

L lralihaed, Pr (gl‘][{*’g) — HP(GIH*’B) — H covers(e, H", B)
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Ajf"'ﬂles;s this depends on L.

0 Ly @ Le, ©, K((EIVI‘,B).



