() Assume that before veslwton, 7 i of cndicsble
/F[)-L‘lb'ﬂn \nds becn hf,‘:mm‘& an "te(aJS L‘.r in

S ¢t P ¢
ClonSed F"‘d'"l' - F"“)g’t!-‘v Lﬁe \:)‘AU “w .
-, ol gud not Lovnﬂe.'\‘b ")
The 1,u.le of 19s()lutlon remains i»()Ll}}-{‘ or clauses in the predicate logic. That is,
if C'{ and C5 are clauses and R is a resolvent, then {C',C5} = R. The presence
of variables and substitutions makes the ploof of this a little more involved.

Theorem 19 Suppose R is the result of resolving on literal L in Cy and M
in Co. Let 0 be the most_general unifier of L and =M that is used to obtain

R. Then, the soundness of a single step of resolution means {C,Ca} = (C —
{LH)AU (Cy— {M})6.

Proof: Let 37 be a model for C'1 and Cy. Now, we know that either (a) L# is
true and M6 is false in M; or (b) L# is false and M8 is true in M. Suppose the
former. Since M is a model for Cs, it is a model for C50 (based on theorem 18).
Therefore, at least one other literal (Cy — {M})0 must be true in M. In other
words, T is a model for (Chy —{L})0U(Cy —{M})f. Case (b) similarly results
in M being a model for (Cy — {L})# and hence for R. So, a single resolution
step is sound - the soundness of a proof consisting of several resolutions steps

can be shown quite easily using the technique of induction. O
NV —

Also 'ng—u-fa.k len Cuﬂ\(ﬂer{.

SugsuraPTiont _ defn,

Clause C Subsumes D f@

['\ﬁ ?ro? Ioj]c_ C - C Subsumes gc'{oc C_D] j

,_/-
dhen
% Vb COED does Ct:D{) ' %l::i{
- EORTAE Foré nek hid @ j;f]
)
/h!."lai‘g ;e (ECY : ce-\) Z%—f C
= ceco 5(CED Sa” Con| €cep

ACFINY U\ «Hﬂv o\ vz ,_,_\m?hma

Here are a pair of clemses C' and D SUCh that C' subsumes D:

CBED 'FO‘(Cow e 8 :

C': Primate(x) < Ape(x) E-':C.

D : Primate(Henry) <« Ape(Henry), Human(Henry) ‘g

C': Human(x) «— Human(father(z))
D : Human(y) «— Human(father(father(y)))

e T ~1forallle A"

o l-1forallle A"

e 1> m iff there is a substitution # such that 16 = m. forl. m € A

We will represent a list of elements e;....,¢, as the(as the language Prol
does) by [e1,...,en], and let 1 = Mem(x, [z, y]) and m = Mem(1,[1,2]) th
1 = m with 6 = {2/1,y/2}. It is easy to see that > is a quasi-order over A
clearly 1 = 1, with the empty substitution 6 = () (that is, > is reflexive). No
let 1 > m and m > 1. That is, there are some substitutions #; and 6> such th
10, = m and mfy = 1. That is, (161) 0o 8y = n. With 8 = 6, o 65 it follows th
1~ 1.

