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Q.ne, of the central open questions of artificial intelligence is concerned with
v eombmmg ) expresswe knowledge representatlpn formalisms such as relational
mldﬁrst—erd’er 100“1(‘ “with [11) RIDCIpTed probablllstle and statistical approaches
to inference and learning. Why? Here are some reasons: -

1. The fields of knowledge representatlon and mcluetlve logle programming
stress the 1mpor‘tance ofre'[af'f)na]@nd logical represent ationS that provide Lﬂ\c GP m f( yenee

the flexibility and modularity to model Targe domains. “They also high- C"YN’S' h |
light the importance O@akmg general statementsy rather than making ':’
e wor

statements for every single aspect of T 7 separately.

2. The fields of statistical learning and uncertainty in artificial intelligence ‘F"Y
emphasize that a agents that operate in the reaf world must deal with un- ' ('O.J.‘ h°m

certainty. An agent typically receives only noisy or limited information
y ypically ¥ noisy, att bufe=alue

about the world; actions are often non-deterministic; and an agent

to take care of unpredictable events. PI‘Obabllltj theor;zr provides a sound J.m D-{a_f’.( | rj

mathematical foundation for inference akncr[eeurnmcr under uncertainty.

@Maehine learning, in general, argues that an agent needs to be capable of
improving its performance through experience.
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Definition 19 Statistical relational learning deals with machine learning and
data mining in relational domains where observations may be missing, partially
observed, and/or noisy.
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Employing relational and logical abstraction within statistical learning has three

advantages:
1. Variables, i.e., placeholders for entities allow one to make abstraction of 9
Specific emtities. jnstead ©
2. [lni.ﬁg._a_t.ig.n allows one to share information among entities. ’F rd r "fC u‘d‘l‘r\m

3. In many applications, there is a rich background l;_heorx available, which

g can efficiently and elegantly be represe'ﬁted'aﬂé‘ts’of‘ general regularities, ,cbt ea_th w%
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Definition 20 Given a set of positive and negative eramples £ * and ‘(S.' ~ owver
some Zg@g,uagc_e@ a background_theory B, in the form of a set of definite
clauses, a hypothesis language Ly, which specifies the clauses that are allowed
in hypotheses, and a covers relationcovers(c, H B & {0,1} swhich basically
returns the classification of an evample e with respect to 'H and B, find a hy-
pothesis H in H that covers (with respect to the background theory B) all positive
examples in ET (completeness) and none of the negative examples in €~ (con-
sistency). T
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Formally, ILP is concerned with finding a hypothesis H (a logic program, No'
i.e. a definite clause program) from a set of positive and negative examples £

and £7.
Consider learning a definition for the Daughter/2 predicate, i.e., a set of
clauses with head predicates over Daughter /2, given the following facts as learn-

ing examples:

Er:  Daughter(dorothy,ann). 1 P‘)S
Daughter(dorothy, brian).

E~:  Daughter(rex,ann).

Daughter(rex, brian).

)
.1 SOmwmon
Additionally, we have some general knowledge called background knowledge ; <, nse

B. which describes the family relationships and sex of each person: , kﬂ dldl EAJ ¢

4

Mother(ann,dorothy). Female(dorothy). Female(ann). -7

Mother(ann, rex). Father(brian,dorothy).  Father(brian, rex).
-l N—
¢r
From this information, we could induce the following H:
= 3

2
Daughter(C,P) :— Female(C'), Mother(P,C).
Da-ugfite-r(C,P) :—  Female(C), Father(P,C).
O

which perfectly explains the examples in terms of the background knowledge,
i.e., £ are entailed by H together with B, but £~ are not entailed.
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Benefrts of SRL kosed on ILP

Classical ILP learning settings, as we will argue, naturally carry 0\6”1"_@9
the _probablhstl( case. The probabilistic ILP settings make abstraction
“of specific [)I‘Ohdhlll%tl( relational and first order logical representations
and inference and learning algorithms yielding general statistical relational
learning settings.

Many ILP concepts and techniques such as more-general-than, refinement
operators, least general generalization (lub), and greatest lower bound (glb)
can be reused. Therefore, many ILP learning algorithms such as Quinlans
FOIL and De Raedt and Dehaspes Claudien can easily be adapted.

The ILP perspective highlights the importance of background knowledge
within statistical relational learning. The research on ILP and on artificial
ntelligence in general has shown that background knowledge is the key to
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_suecess in many applications.

An ILP approach should make statistical relational learning more intuitive
to those coming from an ILP background and should cross-fertilize ideas
developed in ILP and statistical learning.
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1. Probabilistic C [au%e[& lauses in H and B are annotated with probabilistic

idiedad R e e

information, and Hére, we use the following probability nota.tlona.')V\-' ith
X, we denote a (random) variable. Furthermore, = denotes a state and
X (resp. x) a set of variables (resp. states). We will use Pr to denote a
probability distribution, e.g., Pr(x), and p to denote a probability value,
e.g., p(X = x) and p(X = x).

2. Probabilistic (Oz'ere'@he covers relation becomes probabilistic) A prob-
abilistic covers relation softens the hard covers relation employed in tra-
ditional ILP and is defined as the probability of an example given the
hypothesis and the background theory. A probabilistic covers relation

takes as arguments an example e, a hypothesis H and poqaihl\' the ha(k—
ground theory B, and returns the probability Value@ﬁ of

the example e given H and B, i.e., covers(e, H,B) = Pr ( E\Ii-f’)/[




F-é)em AL De FirnhTiopy

(Maxksv Nekaovs) * PR =TT pex |

Definition 21 Given a gzrobabilistéc—log?ﬂcal language Ly and a set & :c')jf er-
amples over some lanquage Ly, Find The hypothesis H- in Ly that mazimizes

PrEH ). N peb
Wb e . P2

Under the usual z.72.d. assumption, z.e., examples are sampled independently
from identical distributions, this results in the maximization of

L-lmhhﬂds. Pr ((S‘]‘I[{*,B) = HP(E’IH*,B) = H COU@TS(&H*?B)
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Ajf"'ﬂles;s this depends on L.

0 Ly @ Le, G) K((EIVI‘,B).



