Hypothesis Formation

Given background knowledge B and pos-
itive examples ET = ey Aes..., negative
examples E— ILP systems are concerned
with finding a hypothesis H = D1 A... that
satisfies (note: U and A used interchange-

ably)

Posterior Sufficiency. BA H = EtT and
B/\Dj —e1 VerV...

Posterior Satisfiability. BAHAE™ E=0O

Recall that if more than one H satisfies
this, the one with highest posterior proba-
bility is chosen

The D; can be found by examining clauses
that “relatively subsume” at least one ex-
ample

Single Example, Single Hypothesis
Clause

What does it mean for clause D to ‘rela-
tively subsume” example e

— Normal subsumption: D > e means 40 s.t. D8 C
e. This also means D8 = e or |= (e < D0)

QN

gfather(henry, john) <
B : father(henry, jane) <+
father(henry, joe) <
parent(jane, john) <—

parent(joe, robert) <
D : gfather(X,Y) < father(X,Z),parent(Z,Y)

— Note that for this B, D, e with 8 = {X/henry, Y /john,
Z/jane}, BU{D6} = e

— That is: D > e means B = (e « D) Clearly
if B = (0 normal subsumption between clauses
results.

Using the Deduction Theorem

B = (e + D9) BUA{D8} =e
BUe = Do
{D0} |=BUe
= (BUe «+ DY)

That is, D 5 e means D > BUe

Recall that if C1 > Cy then C; &= C>. In fact,
if C12 are not self-recursive, then C7 » C> =
C1 = C>

Let a1 Aaz... be the ground literals true in all
models of BUe. Then

BU€|:CL1/\CL2...
a1/\az/\...|:BU€

Let L(B,e) =a1 Aax A....

if D> 1(B,e) then D |= 1(B,e) and therefore
D = BUe.

In fact, it can be shown that if D, e are not self-
recursive and D > 1(B,e) then D > BUe (that
iS, D >__B 6)

A Sufficient Implementation
(given B, F)

1. hg=B,i=0,ET ={eq1,...,en}

2. repeat
(a) increment i
(b) Obtain the most specific clause L(B,e;)

(c) Find the clause D; that: subsumes 1(B,e¢;);
and is consistent with the negative ex-
amples;

(d) h; =h;—1 U{D;}
3. until 2 >n

4. return hp,

— 1(B,e;) may be infinite

— May perform a lot of redundant computa-
tion (D; € h;_1)

— Need not return in the hypothesis with max-
iImum posterior probability

A “Greedy” Implementation
(given B, E)

1. hh=B,Ef =ET,i=0

2. repeat
(a) increment ¢

(b) Randomly choose a positive example e; from
By

(c) Obtain the most specific clause L(B,e;)

(d) Find the clause D; that: subsumes L(B,e;); and
is consistent with the negative examples; and
maximises p(hi;_1U{D;}|e; UE~) where ¢} are the
examples in ET made redundant by h;_1 U {D;}

(e) hi = h;_1 U {Dz}
() Ef = Ef \ef

3. until EF =0

4. return h;

— 1(B,e;) may be infinite

— Need not return in the hypothesis with max-
iImum posterior probability

Finding 1: an example

gfather(X,Y) « father(X,Z), parent(Z,Y)
father(henry,jane) «+
mother(jane,john) <«
mother(jane,alice) «

€;-

gfather(henry,john) «

Conjunction of ground atoms provable from B U e;:
—parent(jane,john) A
father(henry,jane) A
mother(jane,john) A
mother(jane,alice) A
—gfather(henry,john)

L(B,ei):
gfather(henry,john) Vv parent(jane,john) «+
father(henry,jane),
mother(jane,john),
mother(jane,alice)

D;:
parent(X,Y) « mother(X,Y)

Ways of obtaining a finite _:
depth-bounded mode language

Finding a clause D; that subsumes L(B,e;)
is hampered by the fact that L(B,e;) may
be infinite!

Use constrained subset of definite clauses
to construct finite most-specific clauses

Mode declarations
modeh(*,gfather(+person,-person))
modeh(*,parent(+person,-person))
modeb (*,father(+person,-person))
modeb (*,parent(+person,-person))

modeb(*,mother(+person,-person))

Definite mode language

LetC : h < bq,...,by be a definite clause
with an ordering over literals. Let M be
a set of mode declarations. C'is in the
definite mode language L£L(M) iff

1. his the atom of a modeh declaration
in M with every place-marker of 4type
and —type replaced with variables, and
every place marker of #type replaced
by a ground term.

2. Every atom b; in body of C is an atom
in @ modeb declaration in M with 4, —, #
places being replaced as above.

3. Every variable of 4-type in b; is either
of +type in h or or —type in a b; (1 <
j<t)

Given a set of mode declarations M it
IS always possible to decide if a clause
Cisin L(M)

Depth of variables. Let C be a definite
clause, v be a variable in an atom in C,
and U, all other variables in body atoms of
C that contain v

d(v) = 0 if v in head of C
(max,ey,d(u)) +1 otherwise

C : gfather(X,Y) < father(X,Z), parent(Z,Y)

Then d(X) =d(Y) =0, d(Z) = 1

Depth bounded definite mode language

Let C be a definite clause with an or-
dering over literals. Let M be a set of
mode declarations. C is in the depth-
bounded definite mode language L, (M)
iff all variables in C have depth at most
d

The clause for gfather/2 earlier is in
Lo(M)

For every 1(B,¢;) it is the case that

Thereisa 1L 4(B,e;) in Lg(M) s.t. 1L4(B,e;) >
J—(B7 e’i)

J—d(B7€i) is finite

If C = 14(B,e;) then C = 1(B,e;)

Finding 1;: an example

J_(B, ei):
gfather(henry,john) Vv parent(jane,john) <«
father(henry,jane),
mother(jane,john),
mother(jane,alice)
modes:

modeh(*,parent(+person,-person))
modeb(*,mother(+person,-person))
modeb(*,father(+person,-person))

J—0(B7 e’i):
parent(X,Y) <«

11(B,e€;):

parent(X,Y) <«
mother(X,Y),
mother(X,Z)

Revised “Greedy” Implementation
(given B, E,d)

1. ho=B,Ef =E*,i=0

2. repeat
(a) increment ¢

(b) Randomly choose a positive example e; from
By

(c) Obtain the most specific clause L 4(B,e;)

(d) Find the clause D; that: subsumes L(B,e;); and
is consistent with the negative examples; and
maximises p(hi—1U{D;}|e; UE™) where ¢} are the
examples in ET made redundant by h;_1 U {D;}

(e) hi = h;_1 U {Dz}
() Ef = Ef \ef

3. until EF =0

4. return h;

— Need not return in the hypothesis with max-
imum posterior probability

Question. How should the implementation be
modified so that it returns the hypothesis
with maximum posterior probability?

An example: trainspotting

1. TRAINS GOING EAST 2. TRAINS GOING WEST

L Lajfoool I
ool \/ | a I 2 [l a o

oo da b \a I s \O /O[T \ o

Trainspotting: Modes

modeh(1,eastbound(+train)).
modeb (1, short(+car)).
modeb(1,closed(+car)).
modeb(1,long(+car)).

modeb (1,open_car(+car)).
modeb(1,double(+car)).

modeb (1, jagged(+car)).

modeb (1, shape (+car,#shape)) .
modeb (1,load(+car,#shape,#int)).
modeb (1,wheels(+car,#int)).
modeb (*,has_car(+train,-car)).

Trainspotting: Examples &

Background
Positive Negative
eastbound(eastl). eastbound(west6).
eastbound(east2). eastbound(west7).
eastbound(east3). eastbound (west8).
eastbound(east4). eastbound (west9).
eastbound(easth). eastbound (west10).

% type definitions
car(car_11). car(car_12).
car(car_21). car(car_22).

shape (elipse). shape(hexagon).

% eastbound train 1

has_car(eastl,car_11). has_car(eastl,car_12). ..
shape(car_11,rectangle). shape(car_12,rectangle).
open_car(car_11). closed(car_12).

long(car_11). short(car_12).

% westbound train 6

has_car(west6,car_61). has_car(west6,car_62).
long(car_61). short(car_62).
shape(car_61,rectangle). shape(car_62,rectangle).

Trainspotting: Search

eastbound(A) :-
has_car(A,B).
[5/5]
eastbound(A) :-
has_car(A,B), short(B).
[6/5]
eastbound(A) :-
has_car(A,B), open_car(B).
[5/5]
eastbound(A) :-

has_car(A,B), shape(B,rectangle).

[6/5]

[theory]
[Rule 1] [Pos cover = 5 Neg cover =

eastbound(A) :-

0]

has_car(A,B), short(B), closed(B).

[pos-neg] [5]

