Hypothesis Formation

Given background knowledge B and positive examples $E^+ = e_1 \wedge e_2 \dots$, negative examples E^- ILP systems are concerned with finding a hypothesis $H = D_1 \wedge \dots$ that satisfies (note: \cup and \wedge used interchangeably)

Posterior Sufficiency. $B \wedge H \models E^+$ and $B \wedge D_i \models e_1 \vee e_2 \vee \dots$

Posterior Satisfiability. $B \wedge H \wedge E^- \not\models \Box$

Recall that if more than one H satisfies this, the one with highest posterior probability is chosen

The D_i can be found by examining clauses that "relatively subsume" at least one example

Single Example, Single Hypothesis Clause

 ${f W}$ hat does it mean for clause D to "relatively subsume" example e

- Normal subsumption: $D \succeq e$ means $\exists \theta \ s.t. \ D\theta \subseteq e$. This also means $D\theta \models e$ or $\models (e \leftarrow D\theta)$

```
e: gfather(henry, john) \leftarrow \\ B: father(henry, jane) \leftarrow \\ father(henry, joe) \leftarrow \\ parent(jane, john) \leftarrow \\ parent(joe, robert) \leftarrow \\ D: gfather(X, Y) \leftarrow father(X, Z), parent(Z, Y)
```

- Note that for this B, D, e with $\theta = \{X/henry, Y/john, Z/jane\}, B \cup \{D\theta\} \models e$
- That is: $D \succeq_B e$ means $B \models (e \leftarrow D\theta)$ Clearly if $B = \emptyset$ normal subsumption between clauses results.

Using the Deduction Theorem

$$B \models (e \leftarrow D\theta) \equiv B \cup \{D\theta\} \models e$$

$$\equiv B \cup \overline{e} \models \overline{D\theta}$$

$$\equiv \{D\theta\} \models \overline{B} \cup \overline{e}$$

$$\equiv [\overline{B} \cup \overline{e} \leftarrow D\theta]$$

- That is, $D \succeq_B e$ means $D \succeq \overline{B \cup \overline{e}}$
- Recall that if $C_1 \succeq C_2$ then $C_1 \models C_2$. In fact, if $C_{1,2}$ are not self-recursive, then $C_1 \succeq C_2 \equiv C_1 \models C_2$
- Let $a_1 \wedge a_2 \dots$ be the ground literals true in all models of $B \cup \overline{e}$. Then

$$\frac{B \cup \overline{e} \models a_1 \land a_2 \dots}{a_1 \land a_2 \land \dots} \models \overline{B \cup \overline{e}}$$

- Let $\perp(B,e) = \overline{a_1 \wedge a_2 \wedge \ldots}$
- if $D \succeq \bot(B,e)$ then $D \models \bot(B,e)$ and therefore $D \models \overline{B \cup \overline{e}}$.
- In fact, it can be shown that if D, e are not self-recursive and $D \succeq \bot(B, e)$ then $D \succeq \overline{B \cup \overline{e}}$ (that is, $D \succeq_B e$)

A Sufficient Implementation (given B, E)

1.
$$h_0 = B, i = 0, E^+ = \{e_1, \dots, e_n\}$$

- 2. repeat
 - (a) increment i
 - (b) Obtain the most specific clause $\perp(B,e_i)$
 - (c) Find the clause D_i that: subsumes $\bot(B,e_i)$; and is consistent with the negative examples;

(d)
$$h_i = h_{i-1} \cup \{D_i\}$$

- 3. until i > n
- 4. return h_n

- $-\perp (B,e_i)$ may be infinite
- May perform a lot of redundant computation $(D_i \in h_{i-1})$
- Need not return in the hypothesis with maximum posterior probability

A "Greedy" Implementation (given B, E)

1.
$$h_0 = B, E_0^+ = E^+, i = 0$$

- 2. repeat
 - (a) increment i
 - (b) Randomly choose a positive example e_i from E_{i-1}^+
 - (c) Obtain the most specific clause $\perp(B,e_i)$
 - (d) Find the clause D_i that: subsumes $\bot(B,e_i)$; and is consistent with the negative examples; and maximises $p(h_{i-1} \cup \{D_i\} | e_i^+ \cup E^-)$ where e_i^+ are the examples in E^+ made redundant by $h_{i-1} \cup \{D_i\}$
 - (e) $h_i = h_{i-1} \cup \{D_i\}$
 - (f) $E_i^+ = E_{i-1}^+ \backslash e_i^+$
- 3. until $E_i^+ = \emptyset$
- 4. return h_i

- $-\perp (B,e_i)$ may be infinite
- Need not return in the hypothesis with maximum posterior probability

Finding \perp : an example

```
B:
   gfather(X,Y) \leftarrow father(X,Z), parent(Z,Y)
   father(henry,jane) ←
   mother(jane,john) ←
   mother(jane,alice) ←
e_i
   gfather(henry,john) \leftarrow
Conjunction of ground atoms provable from B \cup \overline{e_i}:
   ¬parent(jane,john) ∧
   father(henry,jane) ∧
   mother(jane,john) ∧
   mother(jane,alice) ∧
   ¬gfather(henry,john)
\perp (B, e_i):
   gfather(henry,john) ∨ parent(jane,john) ←
                   father(henry,jane),
                   mother(jane,john),
                   mother(jane, alice)
D_i:
   parent(X,Y) \leftarrow mother(X,Y)
```

Ways of obtaining a finite ⊥: depth-bounded mode language

Finding a clause D_i that subsumes $\bot(B,e_i)$ is hampered by the fact that $\bot(B,e_i)$ may be infinite!

Use constrained subset of definite clauses to construct finite most-specific clauses

Mode declarations

```
modeh(*,gfather(+person,-person))
modeh(*,parent(+person,-person))
modeb(*,father(+person,-person))
modeb(*,parent(+person,-person))
modeb(*,mother(+person,-person))
```

Definite mode language

Let $C: h \leftarrow b_1, \ldots, b_n$ be a definite clause with an ordering over literals. Let M be a set of mode declarations. C is in the definite mode language $\mathcal{L}(M)$ iff

- 1. h is the atom of a modeh declaration in M with every place-marker of +type and -type replaced with variables, and every place marker of #type replaced by a ground term.
- 2. Every atom b_i in body of C is an atom in a *modeb* declaration in M with +, -, # places being replaced as above.
- 3. Every variable of +type in b_i is either of +type in h or or -type in a b_j (1 \leq j < i)

Given a set of mode declarations M it is always possible to decide if a clause C is in $\mathcal{L}(M)$

Depth of variables. Let C be a definite clause, v be a variable in an atom in C, and U_v all other variables in body atoms of C that contain v

$$d(v) = \left\{ \begin{array}{ll} \mathbf{0} & \text{if } v \text{ in head of } C \\ (\max_{u \in U_v} d(u)) + \mathbf{1} & \text{otherwise} \end{array} \right.$$

$$C: gfather(X,Y) \leftarrow father(X,Z), \ parent(Z,Y)$$
 Then $d(X) = d(Y) = 0, \ d(Z) = 1$

Depth bounded definite mode language

Let C be a definite clause with an ordering over literals. Let M be a set of mode declarations. C is in the depth-bounded definite mode language $\mathcal{L}_d(M)$ iff all variables in C have depth at most d

The clause for gfather/2 earlier is in $\mathcal{L}_2(M)$

For every $\perp(B,e_i)$ it is the case that

There is a $\bot_d(B,e_i)$ in $\mathcal{L}_d(M)$ s.t. $\bot_d(B,e_i) \succeq \bot(B,e_i)$

 $\perp_d(B,e_i)$ is finite

If $C \succeq \bot_d(B, e_i)$ then $C \succeq \bot(B, e_i)$

Finding \perp_i : an example

```
\perp (B, e_i):
      gfather(henry,john) ∨ parent(jane,john) ←
               father(henry,jane),
               mother(jane,john),
               mother(jane, alice)
modes:
      modeh(*,parent(+person,-person))
      modeb(*,mother(+person,-person))
      modeb(*,father(+person,-person))
\perp_{\mathsf{O}}(B,e_i):
      parent(X,Y) \leftarrow
\perp_1(B,e_i):
      parent(X,Y) \leftarrow
               mother(X,Y),
               mother(X,Z)
```

Revised "Greedy" Implementation (given B, E, d)

1.
$$h_0 = B, E_0^+ = E^+, i = 0$$

- 2. repeat
 - (a) increment i
 - (b) Randomly choose a positive example e_i from E_{i-1}^+
 - (c) Obtain the most specific clause $\perp_d(B,e_i)$
 - (d) Find the clause D_i that: subsumes $\bot(B,e_i)$; and is consistent with the negative examples; and maximises $p(h_{i-1} \cup \{D_i\} | e_i^+ \cup E^-)$ where e_i^+ are the examples in E^+ made redundant by $h_{i-1} \cup \{D_i\}$
 - (e) $h_i = h_{i-1} \cup \{D_i\}$
 - (f) $E_i^+ = E_{i-1}^+ \backslash e_i^+$
- 3. until $E_i^+ = \emptyset$
- 4. return h_i

 Need not return in the hypothesis with maximum posterior probability

Question. How should the implementation be modified so that it returns the hypothesis with maximum posterior probability?

An example: trainspotting

1. TRAINS GOING EAST

2. TRAINS GOING WEST

Trainspotting: Modes

```
:- modeh(1,eastbound(+train)).
:- modeb(1,short(+car)).
:- modeb(1,closed(+car)).
:- modeb(1,long(+car)).
:- modeb(1,open_car(+car)).
:- modeb(1,double(+car)).
:- modeb(1,jagged(+car)).
:- modeb(1,shape(+car,#shape)).
:- modeb(1,load(+car,#shape,#int)).
:- modeb(1,wheels(+car,#int)).
:- modeb(*,has_car(+train,-car)).
```

Trainspotting: Examples & Background

Positive

Negative

```
eastbound(east1).
                             eastbound(west6).
      eastbound(east2).
                             eastbound(west7).
      eastbound(east3).
                             eastbound(west8).
      eastbound(east4).
                             eastbound(west9).
      eastbound(east5).
                            eastbound(west10).
% type definitions
car(car_11). car(car_12). ...
car(car_21). car(car_22). ...
shape(elipse). shape(hexagon). ...
% eastbound train 1
has_car(east1,car_11). has_car(east1,car_12). ...
shape(car_11,rectangle). shape(car_12,rectangle). ...
open_car(car_11). closed(car_12).
long(car_11). short(car_12). ...
% westbound train 6
has_car(west6, car_61). has_car(west6, car_62). ...
long(car_61). short(car_62).
shape(car_61, rectangle). shape(car_62, rectangle).
```

Trainspotting: Search

```
eastbound(A) :-
   has_car(A,B).
[5/5]
eastbound(A) :-
   has_car(A,B), short(B).
[5/5]
eastbound(A) :-
   has_car(A,B), open_car(B).
[5/5]
eastbound(A) :-
   has_car(A,B), shape(B,rectangle).
[5/5]
[theory]
[Rule 1] [Pos cover = 5 Neg cover = 0]
eastbound(A) :-
       has_car(A,B), short(B), closed(B).
[pos-neg] [5]
```