A “Greedy’ Implementation
(given B, E)

1. hh=B,Ef =E*,i=0

2. repeat
(a) increment ¢

(b) Randomly choose a positive example e; from
By

(c) Obtain the most specific clause L(B,e;)

(d) Find the clause D; that: subsumes L(B,e;); and
is consistent with the negative examples; and
maximises p(h;_1U{D;}|e; UE~) where ¢} are the
examples in ET made redundant by h;_1 U {D;}

(e) hi = h;—1 U {DZ}
(f) Ef = Ef \ef

3. until Ef =0

4. return h;

Search and Redundancy

2 stages in clause-by-clause construction
of hypothesis

1. Search
Empty clause Generality
/N
/
/
/
/ ,~ Clausesinconsitent with negative examples
\.\'\ ’ “/ :L ‘ SRR ’
\ < /\,\" < ‘.\’7 J e
\.\ _ - R R T /\\/
Yoo Less general
) ® <
\ - - N R Y 7
‘\/ Clause (reduced member of equivalence class)
—
Most specific clause in depth-bounded mode language

@® Most specific clause

1

2. Remove redundant clauses once best clause
is found

Moving about in the lattice:
refinement steps

General-to-specific search: start at O, and
move by

1. Adding a literal drawn from _L;

p(X,Y) « qg(X) becomes p(X,Y) + q(X),r(Y)

2. Equating two variables of the same type

p(X,Y) « q(X) becomes p(X, X) + q(X)

3. Instantiate a variable with a general functional
term or constant

p(X,Y) « q(X) becomes p(3,Y) + q(3)

Specific-to-general search: start at L;

Each of these is called a “refinement step”

Search Methods
Subsumption lattice can be represented as
a directed acyclic graph

Can convert this to a tree. Root is the first node
(O or 1;). Children of a node are refinements.

Searching the lattice is therefore equivalent
to searching a tree

— 2 basic types of tree search: depth-first
(DF) and breadth-first (BF)

— DF and BF are “blind”. More guidance
at any node s

* gs: cost of optimal path from root to
S

x hg: estimated cost of optimal path to
goal from s

— Different kinds of guided search:

Hill-climbing: DF with hg
Best-first: BF with hg
Best-cost: BF with gg

A*. BF with gs and hg

An Optimal Search Algorithm:
Branch-and-Bound

bb(i, p, f) : Given an initial element ¢ from a discrete set
S; a successor function p : § — 25: and a cost
function f : S — R, return H C S such that H
contains the set of cost-minimal models. That is
for all hi; € H, f(h;) = f(h]) = fmin and for all
s’ € S\H f(s") > fmin-

Active 1= (i).
best := inf
selected 1= ()

while Active # ()

ok N+

begin

(a) remove element k from Active
(b) cost := f(k)

(c) if cost < best

(d) begin

i. best := cost

ii. selected := {k}

iii. let Prune; C Active s.t. for each 5 € Prunes,
f(j) > best where f(j) is the lowest cost
possible from 5 or its successors

iv. remove elements of Prune; from Active
(e) end
(f) elseif cost = best
i. selected := selected U {k}
(9) Branch := p(k)

(h) let Prunesx C Branch s.t. for each j € Prune,,
f(5) > best where f(j) is the lowest cost pos-
sible from 5 or its successors

(i) Bound := Branch\Prune;
(j) add elements of Bound to Active
6. end

7. return selected

Different search methods result from spe-
cific implementations of Active

— Stack: depth-first search
— Queue: breadth-first search

— Prioritised Queue: best-first search

Redundancy 1: Literal
Redundancy

Literal [is redundant in clause C VI relative
to background B iff

BAN(CVI)=BAC

Can show The literal [is redundant in clause
C Vvl relative to the background B iff

BA(CVD =C

The clause C is said to be reduced with
respect to background knowledge B iff no
literal in C is redundant.

Redundancy 2: Clause redundancy

Clause C is redundant in the BAC iff B A
C = B.

Can show Clause C is redundant in BAC
iff

B=C=BANCE=0O

A set of clauses S is said to be reduced iff
no clause in S is redundant

Example
ej : gfather(henry, john) <
B : father(henry, jane) <

father(henry, joe) <—
parent(jane, john) <
parent(joe, robert) <

D;: gfather(X,Y) < father(X,Z),parent(Z,Y)

e; IS redundant in B/\Dj/\ej since B/\Dj/\
ej =0

Implementation Issues

Question. Will the clause-by-clause search method
yield the best set of clauses? If no, why
not?

Question. Is it possible to do a theory-by-
theory search?

Question. Is it possible devise a complete search
that is non-redundant? If no, why not?

