A "Greedy" Implementation (given B, E)

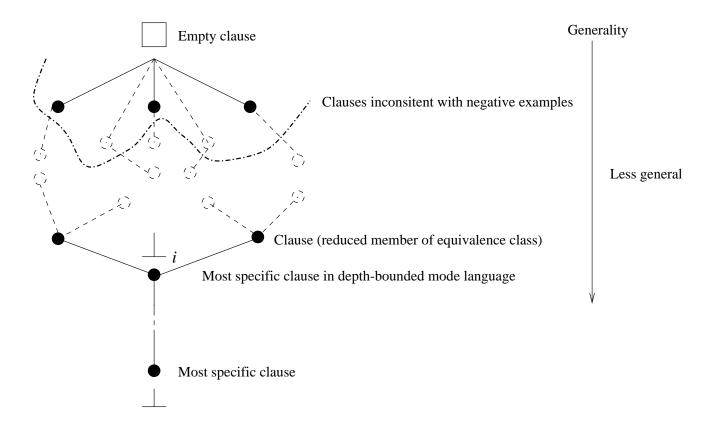
1.
$$h_0 = B, E_0^+ = E^+, i = 0$$

- 2. repeat
 - (a) increment i
 - (b) Randomly choose a positive example e_i from E_{i-1}^+
 - (c) Obtain the most specific clause $\perp(B,e_i)$
 - (d) Find the clause D_i that: subsumes $\bot(B,e_i)$; and is consistent with the negative examples; and maximises $p(h_{i-1} \cup \{D_i\} | e_i^+ \cup E^-)$ where e_i^+ are the examples in E^+ made redundant by $h_{i-1} \cup \{D_i\}$
 - (e) $h_i = h_{i-1} \cup \{D_i\}$
 - (f) $E_i^+ = E_{i-1}^+ \backslash e_i^+$
- 3. until $E_i^+ = \emptyset$
- 4. return h_i

Search and Redundancy

2 stages in clause-by-clause construction of hypothesis

1. Search



2. Remove redundant clauses once best clause is found

Moving about in the lattice: refinement steps

General-to-specific search: start at □, and move by

1. Adding a literal drawn from \perp_i

$$p(X,Y) \leftarrow q(X)$$
 becomes $p(X,Y) \leftarrow q(X), r(Y)$

2. Equating two variables of the same type

$$p(X,Y) \leftarrow q(X)$$
 becomes $p(X,X) \leftarrow q(X)$

3. Instantiate a variable with a general functional term or constant

$$p(X,Y) \leftarrow q(X)$$
 becomes $p(3,Y) \leftarrow q(3)$

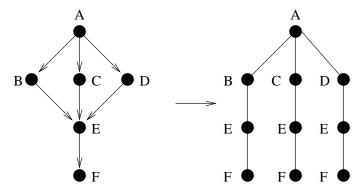
Specific-to-general search: start at \perp_i

Each of these is called a "refinement step"

Search Methods

Subsumption lattice can be represented as a directed acyclic graph

Can convert this to a tree. Root is the first node $(\Box \text{ or } \bot_i)$. Children of a node are refinements.



Searching the lattice is therefore equivalent to searching a tree

- 2 basic types of tree search: depth-first
 (DF) and breadth-first (BF)
- DF and BF are "blind". More guidance at any node \boldsymbol{s}

- st g_s : cost of optimal path from root to s
- st h_s : estimated cost of optimal path to goal from s
- Different kinds of guided search:

Hill-climbing: DF with h_s

Best-first: BF with h_s

Best-cost: BF with g_s

 A^* : BF with g_s and h_s

An Optimal Search Algorithm: Branch-and-Bound

- $bb(i, \rho, f)$: Given an initial element i from a discrete set S; a successor function $\rho: S \to 2^S$; and a cost function $f: S \to \Re$, return $H \subseteq S$ such that H contains the set of cost-minimal models. That is for all $h_{i,j} \in H, f(h_i) = f(h_j) = f_{min}$ and for all $s' \in S \setminus H$ $f(s') > f_{min}$.
 - 1. $Active := \langle i \rangle$.
 - 2. best := inf
 - 3. $selected := \emptyset$
 - 4. while $Active \neq \langle \rangle$
 - 5. begin
 - (a) remove element k from Active
 - (b) cost := f(k)
 - (c) if cost < best
 - (d) begin
 - i. best := cost
 - ii. $selected := \{k\}$
 - iii. let $Prune_1 \subseteq Active \text{ s.t.}$ for each $j \in Prune_1$, $\underline{f}(j) > best$ where $\underline{f}(j)$ is the lowest cost possible from j or its successors

iv. remove elements of $Prune_1$ from Active

- (e) end
- (f) elseif cost = besti. $selected := selected \cup \{k\}$
- (g) $Branch := \rho(k)$
- (h) let $Prune_2 \subseteq Branch$ s.t. for each $j \in Prune_2$, $\underline{f}(j) > best$ where $\underline{f}(j)$ is the lowest cost possible from j or its successors
- (i) $Bound := Branch \backslash Prune_2$
- (j) add elements of Bound to Active
- 6. end
- 7. return selected

 $oldsymbol{\mathsf{D}}$ ifferent search methods result from specific implementations of Active

- Stack: depth-first search
- Queue: breadth-first search
- Prioritised Queue: best-first search

Redundancy 1: Literal Redundancy

Literal l is redundant in clause $C \vee l$ relative to background B iff

$$B \wedge (C \vee l) \equiv B \wedge C$$

Can show The literal l is redundant in clause $C \vee l$ relative to the background B iff

$$B \wedge (C \vee l) \models C$$

The clause C is said to be reduced with respect to background knowledge B iff no literal in C is redundant.

Redundancy 2: Clause redundancy

Clause C is redundant in the $B \wedge C$ iff $B \wedge C \equiv B$.

 ${\bf C}$ an show Clause C is redundant in $B\wedge C$ iff

$$B \models C \equiv B \wedge \overline{C} \models \Box$$

f A set of clauses S is said to be reduced iff no clause in S is redundant

Example

 e_j : $gfather(henry, john) \leftarrow$

 $B: father(henry, jane) \leftarrow father(henry, joe) \leftarrow parent(jane, john) \leftarrow parent(joe, robert) \leftarrow$

 $D_i: gfather(X,Y) \leftarrow father(X,Z), parent(Z,Y)$

 e_j is redundant in $B \wedge D_j \wedge e_j$ since $B \wedge D_j \wedge \overline{e_j} \models \Box$

Implementation Issues

Question. Will the clause-by-clause search method yield the best set of clauses? If no, why not?

Question. Is it possible to do a theory-by-theory search?

Question. Is it possible devise a complete search that is non-redundant? If no, why not?