Homework Exercise 2

0.0.1 Quantity Scanner using JAPE

We compiled approximately 150 rules using the JAPE grammar covering the
following types: mass, mileage, power, speed, density, volume, area, money,
time duration, time epoch, temperature and length. The JAPE engine within
GATE was used to compile and execute these rules.

JAPE is a version of CPSL! (Common Pattern Specification Language).
JAPE provides finite state transduction over annotations based on regular ex-
pressions. The JAPE grammar requires information from two main resources:
(i) a tokenizer and (ii) a gazetteer.

(1) Tokenizer: The tokenizer splits the text into very simple tokens such
as numbers, punctuation and words of different types such as uppercase and
lowercase, certain types of punctuation, etc. Although the tokenizer is capable
of much deeper analysis than this, the aim is to limit its work to maximise
efficiency, and enable greater flexibility by placing the burden on the grammar
rules, which are more adaptable.

(2) Gazetteer: The gazetteer lists used are plain text files, with one entry
per line. Each list represents a set of keywords, such as units of height, mass or
speed or names of months, numeric figures in words, etc. An index file is used
to access these lists; for each list, a major type is specified and, optionally, a
minor type (though we sparingly used minor type specifications in the quantity
rules). These lists are compiled into finite state machines. Any text tokens
that are matched by these machines will be annotated with features specifying
the major and minor types. JAPE grammar rules then specify the types to be
identified in particular circumstances.

The JAPE Rule: A JAPE grammar consists of a set of phases, each of
which counsists of a set of pattern/action rules. The phases run sequentially and
constitute a cascade of finite state transducers over annotations.

Each JAPE rule has two parts, separated by “—>”. The LHS consists of
an annotation pattern to be matched; the RHS describes the annotation to be
assigned. A basic rule is given as:

LA good description of the original version of this language is in Doug Appelt’s TextPro
manual: http://www.ai.sri.com/~appelt/TextPro.

Rule::=
<rule> <ident> (<priority> <integer>)?
LeftHandSide ">>>" RightHandSide

(1) Left hand side: On the LHS, the pattern is described in terms of the
annotations already assigned by the tokenizer and gazetteer. The annotation
pattern may contain regular expression operators (e.g. *, ?, +). There are 3
main ways in which the pattern can be specified:

1. walue: specify a string of text, e.g. {Token.string == “of”}

2. attribute: specify the attributes (and values) of a token (or any other
annotation), e.g. {Token.kind == number}

3. annotation: specify an annotation type from the gazetteer, e.g. {Lookup.minorType
== month}

(2) Right hand side: The RHS consists of details of the annotations and
optional features to be created. These details could also be implemented through
Java code embedded within the RHS. Annotations matched on the LHS of a
rule may be referred to on the RHS by means of labels that are attached to
pattern elements. Finally, attributes and their corresponding values are added
to the annotation. The general format of quantity extraction rules used by us
is:

Rule: NumbersAndUnit
(({Token.kind=="number"})+:numbers
{Token.kind=="unit"})

>>>

:numbers .Name={rule="NumbersAndUnit"}

This says ‘match sequences of numbers followed by a unit; create a Name anno-
tation across the span of the numbers, and attribute rule with value Number-
sAndUnit .

Use of context: Context can be dealt with in the grammar rules in the
following way. The pattern to be annotated is always enclosed by a set of round
brackets. If preceding context is to be included in the rule, this is placed before
this set of brackets. This context is described in exactly the same way as the
pattern to be matched. If context following the pattern needs to be included,
it is placed after the label given to the annotation. Context is used where a
pattern should only be recognised if it occurs in a certain situation, but the
context itself does not form part of the pattern to be annotated.

Almost all the JAPE rules for quantity annotation developed by us require
Java code on the RHS, for accomplishing tasks such as associating the unit as
a feature with the annotation, merging annotations, identifying two numeric

quantities within a rule that identifies intervals, etc. Following is an example
rule that identifies "Mass” quantities.

Rule: Massl

(
(
(AMOUNT_NUMBER) +
(({Token.string == "x"}|{Token.string X"}) AMOUNT_NUMBER {Token.string == """} AMOUNT_NUMBER)?
) :quantl
({Token.string == "to"}|{Token.string == "-"})
({Token.string == "-"})?
(AMOUNT_NUMBER) +
(({Token.string == "x"}|{Token.string == "X"}) AMOUNT_NUMBER {Token.string == """} AMOUNT_NUMBER)?
) :quant2
({Token.string == "-"})?
({Lookup.majorType == "quantityQualifier"})?
({Lookup.majorType == "massunit"}):unit
)
:mass
->
{

gate.AnnotationSet mass = (gate.AnnotationSet)bindings.get("mass"
gate.AnnotationSet unit = (gate.AnnotationSet)bindings.get("unit");
gate.AnnotationSet quantl = (gate.AnnotationSet)bindings.get("quant1");
gate.AnnotationSet quant2 = (gate.AnnotationSet)bindings.get("quant2");

gate.FeatureMap features = Factory.newFeatureMap();

long unitBegin = unit.firstNode().getOffset().longValue() - mass.firstNode().getOffset().longValue();
long unitEnd = unit.lastNode().getOffset().longValue() - mass.firstNode().getOffset().longValue();

long quantiBegin = quantl.firstNode().getOffset().longValue() - mass.firstNode().getOffset().longValue();
long quantiEnd = quantl.lastNode().getOffset().longValue() - mass.firstNode().getOffset().longValue();
long quant2Begin = quant2.firstNode().getOffset().longValue() - mass.firstNode().getOffset().longValue();
long quant2End = quant2.lastNode().getOffset().longValue() - mass.firstNode().getOffset().longValue();

features.put ("unitBegin", "0"+unitBegin);
features.put("unitEnd", "0"+unitEnd);
features.put("quantiBegin", "0"+quantiBegin);
features.put ("quant1End", "0"+quantiEnd);
features.put ("quant2Begin", "0"+quant2Begin);
features.put ("quant2End", "0"+quant2End);

features.put("rule", "Mass1");
outputAS.add(mass.firstNode(), mass.lastNode(), "Mass",features);
3

