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Data Analysis and Interpretation
Milind Sohoni and Ganesh Ramakrishnan

CSE, IIT Bombay

1 Data

The modern world, of course, is dominated by data. Our own common perceptions are

governed to a large extend by numbers and figures, e.g., IPL rankings, inflation statistics,

state budgets and their comparisons across the years, or some figures and maps, such as

naxalite-affected districts, forest cover and so on. The use of, and the belief in data has

grown as the world as a whole and we in particular, become more and more industrialized or

’developed’. In fact, most of us even frame our objectives in terms of numeric targets. For

example, the Human Development Index (HDI), is a composite of various sets of data and

the Millenium Development Goal is for all countries of the world to achieve certain target

numbers in the various attributes of the HDI.

That said, there is much argument amongst politicians, journalists, intellectuals, cricket

players, students and parents, about whether society is becoming too much or too less data-

driven. This matches calls for more subjectivity (e.g., selecting a suitable boy for your sister)

or objectivity (admitting students into colleges). In fact, these arguments are popular even

among national leaders and bureaucrats, where for example, we now have a new area of

study called Evidence-based Policy Design which aims to put objectives ahead of ideology

and studies methods of executing such policies.

Perhaps the first collectors and users of data were the officers of the kings. Much of

the kingdom’s expenses depended on taxes, in cash and in kind, from artisans and farmers.

This called for maintaining records of, say land productivity, over the years, so that the

correct tax rate for the region could be evolved. Also, in the past, ownership of the land

could be tied to the expertise of the owner in ensuring its productivity. This too needed a

careful understanding of data. Note that for data to be put to use, there must be a certain

technical sophistication in understanding (i) what needs to be measured and (ii) how is it to

be measured, (iii) how is it to be used, and finally (iv) are our conclusions sound. Thus for

example, if you have not measured rainfall, or the number of people in the household, then

you would make wrong conclusions on the productivity of the farmer.

Another early use of data was in astronomy. The measurement of this data required sev-

eral sophisticated actions: (i) the universal acceptance of a certain fixed coordinate system,

and (ii) a measuring device to measure the various parameters associated with the objects.

While agricultural data was much about the past, astronomical data was largely about the
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future. Using this, astronomers hoped to predict the seasons, eclipses, and so on. Thus,

this involved building models from the given data with certain predictive capabilities. In

fact, even for the simple panchang (the almanac, as known in Maharashtra), there are two

models, viz., the Datey panchang and the more popular Tilak panchang.

1.1 The method of science and its use of data

The method of science is of course, intimately connected with data. Perhaps, the astronomy

example above is the earliest demonstration of the method of science, as it is known today.

This method may be described in the following steps:

• Observe. To observe is different from to see. To observe also assumes a system and a

tool for measurement.

• Document. This involves a collection of observations arranged systemtically. There

may be several attributes by which we organize our observations, e.g., by time of

observation, the rainfall that year and so on. The output of this phase is data.

• Model. This is the part which wishes to explain the data, i.e., to create a model which

is the first step towards an explanation. This may be causal, i.e., a relationship of cause

and effect, or concommitant, i.e., of coupled variables. It may be explicit, i.e., attempt

to explain one variable in terms of others, or implicit, i.e., a relationship between the

variables which may not be easily separated.

The simplest model will want to explain the observed variable as a simple function of

a classifying attributes, e.g., rainfall>1000mm ⇒ yield = 1000kg.

• Theorize. This is the final step in the method of science. It aims to integrate the

given model into an existing set of explanations or laws, which aim to describe a set

pf phenomena in terms of certain basic and advanced concepts. Thus, for example,

Mechanics would start with the variables position, velocity, acceleration, coefficient of

friction, etc., and come up with laws relating these variables.

We now see our first piece of data in Fig. 1.1. These are the water levels observed

in an observation bore-well managed by the Groundwater Survey and Development Agency

(GSDA) of the Govt. of Maharashtra. This borewell is located in Ambiste Village of Thane

district. On the X-axis are dates on which the observations were taken, and on the Y -axis,

the depth of the water from the top of the well.

The science here is of course, Groundwater Hydro-geology, the science of explaining the

extent and availability of groundwater and the geology which related to it. Since groundwater
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Figure 1: The water levels in a borewell (Courtesy GSDA)

is an important source of drinking water for most indians, almost all states of India have

a dedicated agency to supervise the use of groundwater. GSDA does this for Maharashtra.

One of the core data-items for GSDA are observation wells, i.e., dug-wells and bore-wells

which have been set aside purely for observing their levels periodically.

Let us now see how the four steps above apply to this example. Clearly, merely peering

down a well or a bore-well (which is harder), does not constitute an observation. We see here

that there must have been a device to measure the depth of water and a measuring tape. The

next process is documentation. The above graph is one such documentation which wishes

to plot the water level with the dates of observations. There is one severe problem with our

chosen documentation (found it?), and that is that the scale on the X-axis is not uniform

on by time, but equi-spaced by observation count. Thus two observations which are 10 days

apart and two which are two months apart will appear equally apart in the X-axis. This

will need to be rectified. We see here a periodic behaviour, which obviously matches with

the monsoons. Thus, groundwater recharges with the rains and then discharges as people

withdraw it from the ground through handpumps, wells and borewells. The modelling part

could attempt to describe the groundwater levels with time as ideal curves. The science will

attempt to explain these curves as arising out of natural laws.
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1.2 Data and its attributes

There are two or three important basic concepts that we will associate with data. These are:

• Variables: A variable is an attribute of any system which may change its value while

it is under observation. For example, the number of people in the age group 75− 79 in

Canada is a variable. There are two basic types of variables, viz., qualitative variables

and quantitative variables.

• Quantitative: Qualitative variables take on numeric values. Further, the qualitative

variables could be either discrete or continuous based on whether the variable could

take on only whole number values or any number respectively. Typical continuous

attributes would be weight (in kgs.) and location (in latitude, longitude), money (in

Rupees, USD), height (in inches), age (in days), etc.. Examples of discrete quantitative

variables are number of people in New York, number of cars in Germany, the names

of talukas or anything that can be counted. The discrete set of values is generally

regarded as quantitative since its measurement is usually unambiguous.

• Qualitative: Qualitative variables take on values that are words – they do not take on

numeric values. Examples of qualitative variables include marital status, nationality,

color of skin, gender, etc. Frequently, attributes such as Satisfaction with Service in a

Hotel are quantfied, in this case, by giving a scale between 1-5. It is obviously unclear

if a score of 3 from one customer is better than a 2 from another. Many attributes

may be quantitative at first sight but have a hidden quantification rule, e.g., number

of literates in a village. Here, what should be counted as literacy needs to be defined,

and more importantly, the thousands of census workers must be trained to test people

by this definition.

• Integrity: This is related to the trustworthiness of the data. There could be many

reasons to doubt the veracity–improper measuring instruments or of insufficient toler-

ance, e.g., temepratures reported only as integers (in degree celsius), instead of with

one decimal place. Another frequent problem is the interpretion that different mea-

surers have for the same situation. For example, person A may deem person C as

literate while person B may not. Loss of integrity in the data is a severe problem

from which recovery is not easy. Thus it is best that integrity planned right at the

very beginning. One caution–a reading which does not fit the model does not make it

necessarily of less integrity. Most real-life processes are fairly complicated and trying

to correct a reading which doesnt fit may actually convey a more certain world than

it really is. For example, if we had a nice theory relating inflation with stock market
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rates, with exceptions for a few years, then it would be wise to look into the history of

those specific years, rather than suspect the data item. Such ’outliers’ may prove to

be important.

• Coverage and Relevance: This is whether the data (i) covers the situations that we

wish to explain, and (ii) includes observations on variables which may be relevant but

which we have missed. For example, groundwater levels may depend on the region

and not on the specific location. Thus, the explanation of a groundwater reading may

be correlated with levels in nearby wells, which unfortunately, we have not monitored.

It may also be that groundwater depends intimately on the rainfall in that specific

neighborhood, again, which is not included in the data set.

• Population vs. Sample: This is whether the data that we have is the whole collection

of data items that there are or is a sampling of the items. This is relevant, e.g., when

we wish to understand a village and its socio-economics. Thus, we have visit every

individual and make readings for this individual. This data is then called the popu-

lation data. On the other hand, we may select a representative sample and interview

these selected persons and obtain their data. This is then called the sample data. It

is not always easy to cover the whole population, for it may be very large (a city such

as Mumbai), or it may inaccesible (all tigers in a reserved forst) and even unknown or

irrelevant (e.g., measuring soil quality in an area). In such cases, it is the sample and

the method of selecting the sample which is or prime importance.

There are of course, many other factors that we have missed in our discussion. These

must be surmised for each situation and must be gathered by interveiwing the people who

are engaged in the observations and who are familiar with the terrain or subject matter.

1.3 The purpose and content of this course

This course is meant to give the student the skills of interpreting and analysing data. Data

is ubiquitous and is increasingly used to make dramatic conclusions and important decisions.

In many such situations, the data which led to these conclusions is publicly available and

it is important that as a budding professional, you have the skills to understand how the

conclusions arose from the data. Besides this, in your professional life, you will yourself be

generating such data and would like to draw conclusions and take decisions. These may be

more mundane than national policy, but it may still be important enough for your own work.

This may be, e.g., to prove to your customer that your recipe works, or to analyse the work

of your junior. It may be an important part of a cost-benefit analysis, or it may simply be a
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back-of-the-envelope analysis of a situation. Handling data and correctly interpreting what

it tells and what it does not, is an important skill.

The course has three main parts.

• Part I: Statistics and Data Handling. This will cover the basic notion of data-sets,

its attributes and relationships. We will introduce the basic terminology is statistics

such as the sample and concepts such as the sample mean and sample variance. We

will use the following datasets at different points in the notes for illustrating (a) Thane

census 2001 data-set (b) population of Canada by age group for the year 2007. We

will also study some elementary methods of representing data such as scatter-plots

and histograms. Next, we will study the use of Scilab to manipulate data and to write

small programs which will help in representing data and in making our first conclusions.

Finally, we will develop the elements of least-square fit and of regressions. This is the

first model-building exercise that one does with data. We will uncover some of the

mathematics of this and also of errors and their measurement.

• Part II: Probability. This is the most mathematical part of the course. It consists

of explaining a standard set of models and their properties. These models such as the

exponential, normal or binomial distributions are idealized worlds but may be good

approximations to your data sets. This is expecially true of the normal distribution.

The above will be introduced as example characterizations of a formal object called the

random variable. We will also study functions of random variable and the important

notion of expectation, which is a single numeric description of a data set. This includes

the mean and variance as special cases.

• Part III: Testing and Estimation. This links statistics and probability. The key

notions here are of parameters, and their estimation and testing. A parameter is an

attribute which we believe, determines the behaviour of the data set. For example, it

could be the rate of decline in the water level of the bore-well. We will uncover methods

of estimating parmeters and assigning it confidence. We will use certain well-known

tests such as the Kolmogoroff-Smirnov tests, the χ2-test (pronounced chi-squared) and

the Students t-test. We will also outline methods of accepting and rejecting certain

hypotheses made about he data.
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2 Datasets

2.1 Data1: The Hungama data

: This data set1 is extracted from the corresponding report2. We will be primarily using

this dataset for assignments. It will be also worth looking at the detailed report survey

methodology3, the household survey tool4 and the village survey tool5 that form the basis

for data collection using this method.

2.2 Data2: The Thane census dataset

The first important dataset for our discussions in the notes will be the Thane district census

2001 dataset. This is available at http://www.cse.iitb.ac.in/~sohoni/IC102/thane.

The census is organized by the Govt. of India Census Bureau and is done every 10 years.

The data itself is organized in Part I, which deals with the social and employment data, and

Part II, which deals with economic data and the amenities data. We will be using village

level data, which is a listing of all villages in India along with the attributes of Part I and

II. A snippet of this data can be seen in the figure below.

Let us analyse the structure of Part I data. The data consists of the number of individuals

which have a certain set of attributes, e.g., MARG-HH-M will list the number of male persons

in the village who are marginally employed in household industry. In fact, each attribute

is trifurcated as M,F and P-numbers, which is the male, female and total numbers. We will

only list the un-trifurcated attributes:

• No-HH: number of houselholds.

• TOT: population.

– TOT-SC and TOT-ST: SC and ST population.

– LIT: literate population. A person above 7 years of age, who can read or write in

any language, with understanding.

– 06: population under 6 years of age.

• TOT-WORK: total working population. This is classified further under:

1http://www.cse.iitb.ac.in/~IC102/data/hungama_data.xlsx
2http://www.hungamaforchange.org/HungamaBKDec11LR.pdf
3http://www.hungamaforchange.org/HUNGaMATrainingManual.pdf
4http://www.hungamaforchange.org/HUNGaMASurveyTool-Household
5http://www.hungamaforchange.org/HUNGaMASurveyTool-VillageandAWC
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HH 256

TOT-P 1287

P-06 302

TOT-W 716

TOT-WORK-MAIN and MARG 374 342

CL 193 171

AL 166 170

HH 0 0

OT 15 1

NON-WORK 571

Figure 2: Pimpalshet village

– MAINWORK: main working population. This is defined as people who work for more

than 6 months in the preceding 1 year.

– MARGWORK: marginal workers, i.e., who have worked less than 6 months in the

preceding year.

• NONWORK: non-workers, i.e., who have not worked at all in the past year. This typically

includes students, elderly and so on.

The attributes MAINWORK and MARGWORK are further classified under:

• CL: cultivator, i.e., a person who works on owned or leased land.

• AL: agricultural labourer, i.e., who works for cash or kind on other people’s land.

• HH: household industry, i.e., where production may well happen in households. Note

that household retail is not to be counted here.

• OT: other work, including, service, factory labour and so on.

You can find the data for Pimpalshet of Jawhar taluka, Thane in Figure 2.

2.3 Data3: Population of Canada by Age

Table 1 shows a slightly modified estimate of the population of Canada by age group 6 for

the year 2007. The first column records the class intervals. Class intervals are ranges that

6Source: http://www40.statcan.ca/l01/cst01/demo10a.htm
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the variable is divided into. Each class interval includes the left endpoint but not the right

(by convention). The population (second column) is recorded in the thousands. The third

column has a record of the percentage of the population that happens to fall in each age

group.

Age group Persons (thousands) % of total for each group Height

(class interval) (count) (area of histogram)

0 to 4 1,740.20 5.3 1.06

5 to 9 1,812.40 5.5 1.1

10 to 14 2,060.50 6.2 1.24

15 to 19 2,197.70 6.7 1.34

20 to 24 2,271.60 6.9 1.38

25 to 29 2,273.30 6.9 1.38

30 to 34 2,242.00 6.8 1.36

35 to 39 2,354.60 7.1 1.42

40 to 44 2,640.10 8 1.6

45 to 49 2,711.60 8.2 1.64

50 to 54 2,441.30 7.4 1.48

55 to 59 2,108.80 6.4 1.28

60 to 64 1,698.60 5.2 1.04

65 to 69 1,274.60 3.9 0.78

70 to 74 1,047.90 3.2 0.64

75 to 79 894.7 2.7 0.54

80 to 84 650.8 2 0.4

85 to 89 369.3 1.1 0.22

90 to 95 186.2 0.6 0.12

Total 32,976.00 100 -

Table 1: A slightly modified estimate of the population of Canada by age group for the year
2007. The population (second column) is recorded in the thousands.

3 Descriptive Statistics: Data representation

Given a large set of data-items, say in hundreds, the mean µ and the variance σ2 are two

attributes of the data (c.f. Section 4). A simple representation of the data is the histogram. If

(yi) are real numbers, then, we may group the range into a sequence of consecutive intervals
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and count the frequencies, i.e., the number of occurences of data-items for each interval.

The histogram will be our first example of a (graphical) descriptive statistic. A histogram

provides a picture of the data for single-variable data. We will thereafter discuss the scatter

plot (or scatter diagram), which serves as a graphical description of data of two variables.

3.1 Histograms

A histogram is a graphical display of tabulated frequencies. A histogram shows what pro-

portion of cases fall into each of several or many specified categories. In a histogram, it is

the area of the bar that denotes the value, not the height. This is a crucial distinction to

note, especially when the categories are not of uniform width.

There are three steps to be followed when plotting a histogram for tabulated frequencies

as in Table 1.

1. Convert counts to percentages percent as shown in the third column of Table 1.

percentage =
count

total number of values

2. Compute height for each class-interval as height = percent
width of range

as shown for the fourth

column of Table 1.

3. Draw axes and label them. Label the class intervals (age groups in this case) along the

x−axis and the heights along the y−axis.

4. Along each class interval on the x−axis, draw a rectange of corresponding height and

width as shown in Figure 3. This is precisely the histogram for the tabulated data in

Table 1.

Figure 3 shows the histogram corresponding to Table 1. Note that the sum total area of

all the bars is 100 (percent).

Histograms for discrete and continuous variables look slightly different. For histograms

of continuous variables, class intervals (such as age ranges) are marked along the x−axis

of the histogram and the width of the bars could be positive real number. On the other

hand, histograms of discrete variables have generally a default width of 1 for every bar and

different values assumed by the discrete variable are marked along the x−axis. Each bar

must be centered on the corresponding value of the discrete variable and the height of every

bar is the percentage value.

As another example, consider the taluka of Vasai and the item (yi) of the number of

house-holds in village i. This is a data-set of size 100. The mean is 597, the variance 34100
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Figure 3: Histogram for Table 1.

and the standard deviation 583 (c.f. Section 4), and the maximum size of a village is 3152

households. We may construct intervals [0, 99], [100, 199], [200, 299] and count the number of

villages with the number of households in each interval. This aggregated data may be shown

in a table:

0-100 100-200 200-300 . . .

4 15 38 . . .

This table may be conveniently represented as a histogram as in, Fig 3.1. Locate the mean

597 in the diagram and the points µ ± 3σ, viz., roughly 0 and 2200. We notice that there

are very few points outside this range. In fact, this is a routine occurence and σ actually is

a measure of the dispersion in the data so that most of the data is within µ± 3σ.

While plotting histograms, there is usually ample room for innovation for selecting the

actual variable and the intervals. Here is an example. Consider for example, the data set

composed of the tuple (si, ci, ni, ai) of drinking water schemes for villages in Thane district

sanctioned in the years 2005-2011. Here, ni is the village name, ai is the sanctioned amount,

si is the sanction year and and ci is the completion year. There are about 2000 entries in

this data-set. Here would be a table to illustrate a fragment of this data:
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Figure 4: Number of households in villages in Vasai and Shahpur
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Completion Year

Sanction 2005 2006 2007 2008 2009 2010 Incomplete Total

Year

2005 0 0 3 15 10 13 15 56

2006 0 6 18 33 63 72 182

2007 1 11 12 15 36 75

2008 0 34 55 160 249

2009 1 13 83 97

Reading across a row tells us the fate of the schemes sanctioned in a given year, which

reading a column gives us an idea of the number of schemes completed in a particular year.

We see that there are considerable variations in the data with 2007 being a lean year and

2008 being an active year in sanctioning and 2009 in completing. In fact, both these years

did mark some event in the national drinking water policy.

3.1.1 Density Scale

The height plotted along the y-axis of a histogram is often referred to as the density scale. It

measures the ‘crowdedness’ of the histogram in units of ‘% per x unit’; taller the histogram

bar, more is the density. In the last example, the unit was census. Using Table 1 and

the corresponding density estimates in Figure 3, one can estimate that the percentage of

population aged between 75 and 77 years of age is around 2.7
5
× 3 = 1.62%. This is assuming

that the density of population in the age group 75− 79 is evenly distributed throughout the

interval (that is the bar is really flat). But a close look at the bars surrounding that for 75−79

will suggest that the density in the interval 75− 59 is probably not quite evenly distributed.

While it would accurate and lossless to have population counts corresponding to every age

(instead of intervals), such data may not be as easy to digest as the population estimates

based on intervals. There is a tradeoff between summarization and elaborate accounting or

equivalently between wider bars and lots of bars.

3.2 Scatter Diagram

Suppose we are prodived data comparing the marks (out of 100) obtained by some 500

students in the mathematics subjects in the year 1 and year 2 of a certain college. Consider

a plot with ‘year 1 marks’ plotted along the x-axis and ‘year 2 marks’ plotted around the

y-axis. The scatter diagram (or plot) for this marks data will consist of a point marked per
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Figure 5: A sample scatter plot.

student with its coordinates give by ‘(marks in year 1, marks in year 2)’. Figure 5 shows the

scatter plot for some such hypothetical data. The dotted vertical and horizontal lines mark

the average marks for year 1 and year 2 respectively. It can be seen from the plot that most

students either performed well in both years or performed poorly in both years.

A point corresponding to an observation that is numerically far away from the rest of

the points in a scatter plot is called an outlier. Statistics derived from data sets that include

outliers can be misleading. Figure 6 shows the scatter plot of Figure 5 with an outlier

introduced (in the form of a black point). The outlier results in a relatively drastic change

in mean values of marks for years 1 and 2. While the mean value along the x-axis drops

from 50.72 to 50.68, the mean value along the y-axis increases from 55.69 to 55.74.

The scatter plot is used for a data-set consisting of tuples (xi, yi) where both are numeric

quantities. For example, we could take Shahpur taluka and let xi be the fraction of literate

people in the i-th village. Thus, xi =P-LIT/TOT-P. Let yi be the fraction of people under 6

years of agei, i.e., yi =P-06/TOT-P. Thus, we for any village i, we have the tuple (xi, yi) of

numbers in [0, 1]. Now the scatter plot below merely puts a cross at the point (xi, yi). Note

that we see that as literacy increases, the fraction of people under 6 years of age decreases.

However, one must be very careful to assume causality! In other words, it is not clear that

one caused the other. It could well be that few children induced people to study.

Warning 1 The reader should be aware that each village is our individual data item. For

example, while calculating the mean literacy of the village, we should add up P-LIT for all
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Figure 6: The sample scatter plot of Figure 5 with an outlier (30, 80) .

villages and divide it with the sum of TOT-P. However, we have chosen not to do this. One

reason is that it tends to drop the identity of the village as site for many correlations which

cannot be understood at the individual level. For example, suppose that P-LIT=450 and

P-ST=300 for a village with TOT-P=600. At the individual level, it would be impossible from

this data to come up with a correlation on ST and literacy. Thus, for correlation purposes,

it is only the aggregate which makes sense. There is another reason and that is the lack of

independence. For example, if the overall literacy in Murbad is 0.7, then for a village of

size 300, if an individual’s literacy is independent of others, then the number of literates in

the village should be very close to 210. But thats simply not true. Many large villages will

show substantial deviation from the mean. The reason of course is that the literacy of an

individual in a village is not independent of other individuals in the village.

Not all scatter-plots actually lead to insights. Here is another example where we plot

the P-06 fraction vs. the size of the village (measured as the number of households). In this

example, we dont quite see anything useful going on.

4 Summary Statistics: Elementary properties of data

The simplest example of data is of course, the table, e.g.,
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Figure 7: Population under 6 vs. literacy fractions for Shahpur

Figure 8: Population under 6 fraction vs. number of HH for Shahpur
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Figure 9: A 3-way plot for Shahpur

Name Weight (kgs)

Vishal 63

Amit 73

Vinita 58
...

Pinky 48

This may be abstracted as a sequence {(xi, yi)|i = 1, . . . n} where each xi is a name,

in this case, and yi ∈ R, is a real number in kilos. Summary statistics are numbers that

summarize different features of a dataset. There are summary statistics such as mean,

median, standard deviation for data of single variables and measures such as correlation

coefficient for two variables.

4.1 Standard measures of location

The arithmatic mean µ (or simply the mean) is one of the most popular summary statistics

and it is the average value assumed by the variable. If a variable V assumes values given by

the set of data V = {v1, v2, . . . , vN}, then the mean µ of V is computed as

µ =

N∑
i=1

vi

N
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The mean is also the balancing point on a histogram (c.f. Section 3); that is, if you think of

the x−axis of the histogram as the beam of weight balance and weights to be proportional to

the areas of the bars, then the fulcrum placed at the mean point will ensure that the beam

stays horizontal.

Another measure of ‘center’ for a list of numbers is the median. The median is the number

ν such that at least half the numbers in V are less than or equal to ν and at least half the

numbers are greater than or equal to ν. In order to determine the median, you need to sort

the numbers (in either the ascending or descending order) and just pick the center. If more

than one value qualifies as the middle value, their average (arithmatic mean) is taken to be

the median. The median is the point on the x-axis of a histogram such that half of the total

area of the bars lies to its left and half to its right.

As an example, the average of the set V ′ = {1, 3, 4, 5, 7} is 4, while its median is also

4. On the other hand, if the last number in this set is changed from 7 to 12 to yield the

set V ′′ = {1, 3, 4, 5, 12}, then the median remains 4, while the mean changes to 5. Thus,

the median cares more for the number of values to its left and right rather than the actual

values to its left and right. For the set V ′′′ = {1, 1, 3, 4, 5, 12}, the mean is 13
3

, whereas the

median is the average of 3 and 4, which is 3.5. In general, for a symmetric histogram, the

arithmatic mean equals the median. For a longer (shorter) right tail, the arithmatic mean

is greater (smaller) than the median.

In most applications, mean is preferred over median as a measure of center. However,

when the data is very skewed, median is preferred over mean as a measure of center. For

example, while computing summary statistics for incomes, median is often preferred over

mean, since you do not want a few very huge incomes to affect your measure of center.

Similarly, median is preferred over mean as a measure of center of housing prices.

Thus,

1. the first single point estimate of the data set is the mean. This is denoted by y =∑n
i=1 yi/n. For example, for the above table, it may be that the mean y is 58.6 kgs.

2. Median is that value ymed such that there are as many items above it as there are

below. In other words, if we were to sort the list, then ymed = yn/2. For the data-set

for Vasai in Figure 4, the median is 403.

3. The mode of a dat-set is the value which occurs the most number of times. For a data-

set which has a lot of distinct possibilities, the mode has no real significance. However,

e.g., if (yi) were the number of children in a household, the mode would be important.

For the data-set in Figure 4, a reasonable mode could be read from the histogram and

it would be 250, which is of course, the middle value of the interval [200, 300]. A mode
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could also be a local maxima in the number of occurences of a data-item (or a band of

data items).

4. Existence of two or more modes may point to two or more phenomena resposible for

the data, or some missing information. Consider for example, the weights of students

in a classroom. Upon plotting the histogram, we may notice two peaks, one in the

range 43-45 and another in the range 51-53. Now, it may be that the class is composed

of students from two distinct cultural groups, with students from one group weighing

more, on the average. Or even simpler, the girls may be lighter than the boys. Thus,

the data seems to point that an additional item, e.g., community or sex, should have

been recorded while recording yi.

Example 2 Suppose that we are given data (yi) as above. Suggest a mechanism of

estimating the two expected mean weights for the two communities/sexes.

Another often encountered measure is percentile. The kth percentile of a set of values of a

variable is the value (or score) of the variable below which k percent of the data points may

be found. The 25th percentile is also known as the first quartile; the 50th percentile happens

to be the median.

4.2 Standard measures of spread and association

The measures of center discussed thus far do not capture how spread out the data is. For

example, if the average height of a class is 5 feet, 6 inches (5′ 6′′), it could be that everyone in

the class has the same height or that someone in the class is just 4′ 5′′ and the tallest student

is 6′ 3′′. The interquartile range is an illustrative but rarely used measure of the spread

of data. It is defined as the distance between the 25th percentile and the 75th percentile.

Generally, smaller the interquartile range, smaller will be the spread of the data.

An often used measure of spread is the standard deviation (SD), which measures the

typical distance of a data point from the arithmatic mean. It is computed as the root mean

square7 (rms) of deviations from the artihmatic mean. That is, given a variable V that

assumes values given by the set V = {v1, v2, . . . , vN}, if µ is the arithmatic mean of V , then

the standard deviation σ of V is

σ =

√√√√√√
N∑
i=1

v2
i

N

7The root mean square (rms) measures the typical ‘size’ or ‘magnitude’ of the numbers. It is the square
root of the mean of the squares of the numbers. For example, the rms of the set {1, 3, 4, 5, 7} is

√
20 = 4.47.
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The SD of the set V ′ = {1, 3, 4, 5, 7} is 2, which is a typical distance of any number in V ′ from

the mean µ = 4. Formulated by Galton in the late 1860s, the standard deviation remains the

most common measure of statistical spread or dispersion. The square of standard deviation

is called variance.

Thus,

1. The variance,
∑n
i=1(yi−y)2

n
is denoted by σ2. The standard deviation is simply the

square-root of the variance and is denoted by σ. Note that the units of σ are the same

as that of yi, which in this case, is kilos.

Lemma 3 If zi = ayi+ b, where a, b are constants, then z = ay+ b, and σ(z) = aσ(y).

The variance is the first measure of randomness or indeterminacy in the data. Note

that the variance is a sum of non-negative terms whence the variance of a data set is

zero iff each entry yi is equal to y. Thus, even if one entry deviates from the mean, the

variance of the data set will be positive.

2. Much of quantitative research goes into the analysis of variance, i.e., the reasons by

which it arises. Fo example, if (yi) were the weights of 1-year-old babies, then the

reasons for their variation will lead us to malnutrition, economic reasons, genetic pool

and so on. A high variance will point to substantial deviations in the way that these

children are raised, maybe the health of the mothers when they were born, and so on.

A higher variance is frequently a cause for worry and discomfort, but sometimes is also

the basis of many industries, e.g., life insurance. If our mortality was a fixed number

with zero variance then the very basis of insurance will disappear.

Example 4 Let there be two trains every hour from Kalyan to Kasara, one roughly

at xx:10 and the other roughly at xx:50. Suppose that roughly 10 customers arrive at

Kalyan bound for Kasara every minute and suppose that the discomfort in a train is

proportional to the density, what is the average discomfort?

Solution: Well, for the xx:10 train, there will be 200 customers and for the xx:50 train,

there will be 400 customers. Whence the density at xx:10 is 200 and that for xx:50 is

400. Thus the average density is (200∗200+400∗400)/600 = 2000/6 = 333. Thus, we

see that, on the average there is train every 30 minutes and thus the average density

should be 300, however, since this the variance is high, i.e., the departure times are 20

and 40 minutes apart, the average discomfort rises. It is for this reason that irregular

operations of trains cause greater discomfort even though the average behaviour may

be unchanged. 2
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Example 5 For a given data-set (yi), minimize the function f(λ) =
∑

i(yi − λ)2.

Example 6 Consider the census data set for Thane and for each taluka, compute the

mean, variance and standard deviation for the number of house-holds in each village.

3. Sometime you need to be careful with computing the means. Here is an example. Part

II data of the census, lists for each village, whether or not its people have access to tap

water. Thus, let yi = 1 if the i-th village has access to tap-water and yi = 0 otherwise.

If we ask, what fraction of the people of Thane have access to tap-water then we would

be tempted to compute y =
∑

i yi/n and we would be wrong, for different villages may

have different populations. Whence we need the data as a tuple (wi, yi), where wi is

the population of the i-th village and thus the correct answer would be:

µ = y =

∑
iwiyi∑
iwi

Thus, one needs to examine if there is a weight associated with each observation yi.

Similarly, the variance for this weighted data is similarly calculated as:

σ2 =

∑
iwi(yi − y)2∑

iwi

4.2.1 Effect of change of scale

What is the effect of modifying the data V on the summary statistics of the data such as

arithmatic mean, median and standard deviation? The effect of some data modifications

have been studied in the past and are enumerated below.

1. Adding a constant to every number of the data: The effect is that arithmatic mean

and median go up by that constant amount, while the standard deviation remains the

same. This is fairly intuitive to see.

2. Scaling the numbers in data by a positive constant: The effect is that the arithmatic

mean, the median and the standard deviation get scaled by the same positive constant.

3. Multiplying numbers in data by −1: The average and the median get multiplied by −1,

whereas standard deviation remains the same.
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4.3 The Chebyshev Inqeualities

1. Two-sided: N(Sk) = number of items such that |xi − x| < ks

N(Sk)

n
≥ 1− n− 1

nk2
> 1− 1

k2

Proof:

(n− 1)s2 =
∑

i(xi − x)2

≥
∑

i:|xi−x|>ks(xi − x)2

≥ (n−N(Sk))k
2s2

⇒ n− 1

nk2
≥ (1− N(Sk)

n
)

2. One-sided: N(k) = number of items such that xi − x ≥ ks

N(k)

n
≤ 1

1 + k2

Limits on how ’far’ data points can be from mean. Usually data sets are more bunched

than Chebyshev.

4.4 Correlation coefficient

In Section 3.2, we discussed a method of studying the association between two variables (x

and y). The natural question is if there is a measure of how related are the xi’s with the

yi’s. There are indeed metrics for this and the simplest are covariance and correlation.

Correlation coefficient (r) measures the strength of the linear relationship between two

variables. If the points with coordinates specified by the values of the two variables are close

to some line, the points are said to be strongly correlated, else they are weakly correlated.

More intuitively, the correlation coefficient measures how well the points are clustered around

a line. Also called, linear association, the correlation coefficient r between sets of N values

X and Y assumed by variables x and y respectively can be computed using the following

three steps.

1. Convert the values in X and Y into a set of values in standard unit, viz., Xsu and

Ysu respectively. Computing standard units requires knowledge about the mean and
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standard deviation and could therefore be an expensive step. More precisely, Xsu ={
xi−µx
σx
|xi ∈ X

}
and Ysu =

{
yi−µy
σy
|yi ∈ Y

}
.

2. Let Psu = {psu = xsuysu |xsu ∈ Xsu, ysu ∈ Ysu}.

3. Let µsu be the arithmatic mean of values in Psu. The the correlation coefficient r = µsu.

Thus, if µx and µy are the means of x and y, and σx and σy are the respective standard

deviations8

r =

∑
xi∈X ,yi∈Y

xi − µx
σx

× yi − µy
σy

N
(1)

The sample scatter plot of Figure 5 is reproduced in Figure 10 with four regions marked,

which are all bordered by the average lines. Points (xi, yi) in regions (1) and (3) contribute

as positive quantities in the summation expression for r, whereas points (xi, yi) in regions

(2) and (4) contribute as negative quantities. The correlation coefficient has no units and is

always between −1 and +1; if r is +1 (−1), the points are on a line with positive (negative)

slope. A simple case for which r = 1 is when all values assumed by y are scalar multiples

of the corresponding values of x. If r = 0, the variables are uncorrelated. Two special but

(statistically) uninteresting cases with r = 0, are when either of the variables always takes a

constant value. Other interesting cases with r = 0 are when the scatter plot is symmetrical

with respect to any horizontal or vertical line.

As an example, the correlation coefficient between the marks in years 1 and 2, for the

data in Figure 5 is a positive quantity 0.9923. On the other hand, the correlation coefficient

between the weight and mileage of cars is generally found to be negative. O-rings are one

of the most common gaskets used in machine design. The failure of an O-ring seal was

determined to be the cause of the Space Shuttle Challenger disaster on January 28, 1986.

The material of the failed O-ring was a fluorinated elastomer called FKM, which is not a

good material for cold temperature applications. When an O-ring is cooled below its glass

transition temperature (Tg), it loses its elasticity and becomes brittle. In fact, the correlation

coefficient between the extent of damage to the O-ring and temperature has been found to

be negative.

8Note that, while for the Chebyshev’s inequality we assumed σx =

√√√√√ n∑
i=1

(xi − µx)
2

n−1 , generally, we will

assume that σx =

√√√√√ n∑
i=1

(xi − µx)
2

n
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Figure 10: The sample scatter plot of Figure 5 reproduced with four regions marked based
on positive and negative contributions to the correlation coefficient.

There are some words of caution that one should exercise while interpreting and applying

scatter plots:

1. Extrapolation is generally not a good idea for determining exact values. This is because,

outside the range of values considered, the linear relationship might not hold.

2. Even if you cannot do extrapolations, scatter plots can be informative and could give

us hints about general trends (such as whether the value of one variable will increase

with increase in value of the other variable).

While correlation measures only the strength of the linear association between two vari-

ables, the relationship could also be non-linear. In such cases, the scatter plot could show a

strong pattern that is not linear (as an example, the scatter plot could assume the shape of

a boomerang) and therefore, the quantity r is not as meaningful.

A word of caution before we move on; correlation does not imply causation, while it could

definitely make one curious about a possible causal relationship. Just because the GPAs of

students and their incomes are positively correlated, we cannot infer that high GPAs are

caused by high incomes or vice verca. There could be latent cause of both observations,

resulting in the positive correlation. For example, there is generally a positive correlation

between the number of teachers and the number of failing students at a high school. But

this mainly because generally, larger a school, larger is the number of teachers, greater is the

student population and consequently, more are the number of failing students. Therefore,
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instead of treating the scatter diagram or the correlation measure as a proof of causation,

these could be used as indicators that might possibly signal causation.

4.5 Covariance

For a paired data (xi, yi), where µX and µY are the means of the individual components, the

covariance of X, Y , denoted as cov(X, Y ) is defined as the number

cov(X, Y ) =

∑n
i=1(xi − µX)(yi − µY )

n

It can be shown that the correlation coefficient r, also denoted by corr(X, Y ) is:

corr(X, Y ) =
cov(X, Y )√

cov(X,X)cov(Y, Y )

Lemma 7 We have cov(X, Y ) = cov(Y,X) and that cov(aX + b, cY + d) = ac · cov(X, Y )

and corr(aX + b, cY + d) = corr(X, Y ). Furthermore, −1 ≤ corr(X, Y ) ≤ 1.

The first part is a mere computation. The second part is seen by recalling the property

of the inner product on n-dimensional vectors, which says that a ·b = ‖a‖ ·‖b‖ ·cos(θ), where

θ is the angle between the two vectors.

We see that the correlation of (P-06/TOT-P, P-LIT/TOT-P) is −0.76 while that between

P-06/TOT-P and , no-HH is −0.16. A correlation close to 1 or -1 conveys a close match

between X and Y . The correlation between (p-06/TOT-P) with (P-ST/TOT-P) is 0.57 thus

indicating that the fraction of children is more tightly correlated with literacy than with

being tribal. Scilab allows a 3-way plot and we plot the fraction of children with that of ST

and LIT in Fig. 3.2 below.

Example 8 Show that cor(X, Y ) = 1 (or −1) if and only if Y = aX + b with a > 0 (or

a < 0). This exercise shows that if the coorelation of two variables is ±1 then all points of

the scatter plot lie on a line. Furthermore the sign of the slope is determined by the sign of

the correlation. Thus, the correlation measures the dependence of X on Y (or vice-versa).

4.5.1 Effect of change of scale

The effects of change of scale on correlation are far simpler than they happened to be for

arithmatic mean and standard deviation. We will list some effects on SD of changing a single

variable. The effects of changing values of both variables can be derived by systematically

considering effects produced by changing value of each variable.
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1. When a constant is added or subtracted from every value of any single variable, the

correlation coefficient stays the same, since such an operation involves translating all

points and average lines by the same constant value along the corresponding axis.

Consequently, the relative positions with respect to the closest line (or the standard

units) remain the same.

2. When every value of any single variable is multiplied by the same constant, the corre-

lation coefficient remains the same, since the standard units of the points remain the

same (since the average and SD get scaled by the same amount as the values).

3. When every value of any single variable is multiplied by −1, the signs of the values

of each variable in standard units change (the value and mean change signs, whereas,

the SD does not). Thus, r gets multiplied by −1. However, if each value of both the

variables is multiplied by −1, the overall correlation coefficient will remain unchanged.

4. When the values of x are switched with the values of y, the correlation coefficient stays

the same, since the terms within the summation expression for r in (1) remain the

same.

4.6 Ecological Correlation

In contrast to a correlation between two variables that describe individuals, ecological corre-

lation is a correlation calculated based on averages (or medians) of subgroups. The subgroups

could be determined based on properties of the data and ecological correlation is just the

correlation between means of the subgroups. For instance, the subgroups of students within

a class could be determined by sections within the class or by zipcode of the residential area

(which is indicative of the affluence) of the students. The ecological correlation between

the incomes and the grades of students in a class could then be the standard correlation

coefficient between the arithmatic means of the incomes and grades of students within each

section or zipcode category. Some researchers suggest that the ecological correlation gives

a better picture of the outcome of public policy actions [?]. However, what holds true for

the group may not hold true for the individual and this discrepancy is often called the eco-

logical fallacy. It is important to keep in mind that the ecological correlation captures the

correlation between the values of the two variables across the subgroups (such as the zip

code of residence) and not across individual students. The ecological correlation can help

one draw a conclusion such as ‘Students from wealthier zip codes have, on average, higher

GPAs’. A recurring observation is that correlations for subgroup averages are usually larger

than correlations for individuals.
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5 Linear regression

Regression is a technique used for the modeling and analysis of numerical data consisting of

values of a dependent variable y (response variable) and of a vector of independent variables

x (explanatory variables). The dependent variable in the regression equation is modeled

as a function of the independent variables, corresponding parameters (“constants”), and an

error term. However, the relationship between y and need not be causal (as in the case

of correlation). Regression is used in several ways; one of the most often used ways is to

estimate the average y value corresponding to a given x value. As an example, you might

want to guess the inflation next year, based on the inflation during the last three years.

Consider we have a 2-attribute sample (xi, yi) for i = 1, . . . n, e.g., where xi was the

ST population fraction in village i and yi was the population fraction below 6 years of age.

Having seen the scatter plots, it is natural to determine if the value of x determines or

explains y to a certain extent, and to measure this extent of explanation. The simplest

functional form, of course, is the linear form y = bx + a, where the constants b, a are to be

determined so that a measure of error is minimized. The simplest such measure is

E(b, a) =
n∑

=1

(yi − (bxi + a))2

Since E(b, a) is a continuous function of two variables, its minimization must be obtained at

a derivative condition:
∂E

∂a
= 0

∂E

∂b
= 0

These simplify to:

2
∑n

=1(yi − (bxi + a)) = 0

2
∑n

=1 xi(yi − (bxi + a)) = 0

This gives us two equation: ∑
i 1

∑
i xi∑

i xi
∑

i x
2
i

 a

b

 =

 ∑
i yi∑
i xiyi


These are two linear equations in two variables. An important attribute of the matrix is
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(where µX is the mean):

det

 ∑
i 1

∑
i xi∑

i xi
∑

i x
2
i

 = n
∑

i x
2
i − (

∑
i xi)

2

= n
∑

i(xi − µX)2 + 2nµX
∑

i xi − n2µ2
X − n2µ2

X

= n
∑

i(xi − µX)2

This shows that the determinant is actually non-zero and positive and in fact, nσ2. By

the same token:

det

 ∑
i 1

∑
i yi∑

i xi
∑

i xiyi

 = n
∑

i xiyi − (
∑

i xi)(
∑

i yi)

= n
∑

i(xi − µX)(yi − µY ) + nµY
∑

i xi + nµX
∑

i yi − n2µXµY − n2µXµY

= n
∑

i(xi − µX)(yi − µY )

Thus, the slope of the line, viz., b is:

b =

∑
i(xi − µX)(yi − µY )∑

i(xi − µX)2

which is a close relative of the correlation correl(x,y). It is easy to check (how?) that the

value of b, a as obtained above, actually minimize the error. Thus, our best linear model or

linear regression is y = f(x) is now totally defined. Also observe that f(µX) = µY , i.e.,

the linear regression is mean-preserving. This is seen by the first defining equation ∂E
∂a

= 0,

which gives us
∑

i(yi − (bxi + a)) = 0, and which implies that
∑

i yi − f(xi) = 0, and which

is exactly what we have claimed.

Two examples of the best fit lines are shown below, where we use the Census dataset

for Vasai taluka. We map for each village, the fraction of people 6 years old or under as a

function of (i) the literacy, and (ii) the fraction of tribal population in the village. Note that

the sign of the slope matches that of the correlation.

If we denote ei = yi− bxi− a, the error in the i-th place, then (i)
∑

i ei = 0 and the total

error squared is obviously
∑

i e
2
i . We will show later that

∑
i e

2
i <

∑
i(yi − µY )2. A measure

of the goodness of the fit is the ratio

r2 = 1−
∑

i e
2
i∑

i(yi − µY )2
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Figure 11: Regression: Population under 6 vs. literacy and ST fraction
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The closer r2 is to 1, the better is the fit. The difference 1− r2 is the residual or unexplained

error. See for example, the two data-sets for Vasai: (i) ST-fraction vs. Population below 6,

and (ii) male literate fraction vs. female literate fraction.

We now prove the claim that 0 ≤ r2 ≤ 1.

∑
i ei(f(xi)− µY ) = b

∑
i eixi − a

∑
i ei − µY

∑
i ei

=
∑

i eixi

= 0 since this is the second basic equation

Thus, we see that the n-vectors (ei) and (f(xi) − µY ) are perpendicular, and sum to (yi −
f(xi) + f(xi)− µY ) = (yi − µY ). Thus we must have

∑
i e

2
i ≤

∑
i(yi − µY )2. In other words

0 ≤ r2 ≤ 1.

Another point to note is that if the input tuple were reversed, i.e., if x were to be explained

as a linear function of y, say x = b′y + a′, then this line would be different from the best-fit

line for y as a function of x. To see this, note that bb′ 6= 1 in general. In fact:

bb′ =
〈x, y〉2

〈x, x〉〈y, y〉

and thus unless (x, y) are in fact linearly related bb′ < 1 and thus the two lines will be

distinct. See for example below, the two lines for the Vasai female literacy vs. male literacy.

The blue line is the usual line while the red line inverts the role of X and Y . Note that the

point of intersection is (µX , µY ).

6 The general model

The above linear regression is a special case of a general class of best-fit problems. The

general problem is best explained in the inner product space Rn, the space of all n-tuples of

real numbers, under the usual inner product, i.e., for vectors v, w ∈ Rn, we define 〈v, w〉 =∑n
i=1 viwi. Note that 〈v, v〉 > 0 for all non-zero vectors v and is the square of the length of

the vector.

Let W be a finite subset of Rn, say W = {w1, . . . , wk}. Suppose we have an observation

vector y ∈ Rn. For constants α1, . . . , αk, let w(α) =
∑k

j=1 αjwj. Thus w(α) is an α-

linear combination of the vectors of W . A good measure of the error that w(α) makes in
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Figure 12: Vasai female vs. male literacy. Both way regression.

approximating y is given by:

E(α1, . . . , αk) = 〈yi − w(α)i, yi − w(α)〉

= 〈y −
∑

j αjwj, y −
∑

j αjwj〉

The best possible linear combination is given by find those αj which minimize the error

E(α1, . . . , αk). This is done by the equations:

∂E

∂αj
= 0 for j = 1, . . . , k

If we simplify this, we see that these equations reduce to:

〈y −
∑
i

αiwi, wj〉 = 0 for j = 1, . . . , k

which in turn reduces to the system:
〈w1, w1〉 〈w1, w2〉 . . . 〈w1, wk〉

〈w2, w1〉 〈w2, w2〉 . . . 〈w2, wk〉
...

...

〈wk, w1〉 〈wk, w2〉 . . . 〈wk, wk〉




α1

α2

...

αk

 =


〈w1, y〉

〈w2, y〉
...

〈wk, y〉
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This matrix system is actually invertible (but we will not prove this) and this solves for the

optimal values of the constants α1, . . . , αk. Let f =
∑

j αjwj be this linear combination and

let e = y − f be the error.

Remark: To see how our earlier linear case is a specialization, we see that for the tuple

(xi, yi), our W consists of just two vectors, viz., the vector x = (x1, x2, . . . , xn) and 1 =

(1, 1, . . . , 1). The general linear combination is precisely α11 + α2x, with the i-th entry

(α1 + α2xi), which after relabelling is (a+ bxi).

We see that if 1 ∈ W , then the condition 〈e, wi〉 = 0 for all i says that:

〈e,1〉 = 0⇒ µY = (
∑
i

yi)/n = (
∑
i

fi)/n = µf

We also see that

〈y − f, f − µf1〉 = 〈y − f, f〉+ µf〈y − f,1〉

=
∑

j αj〈y − f, wj〉+ 0

= 0

This implies that y − f and f − µf1 are perpendicular and thus ‖e‖2 ≤ ‖y − µY 1‖2, and

thus the error in the approximation does not exceed the variance of the observations y and

we may thus define r2, the goodness of fit, and the residual error similarly.

One useful application of the above formulation is to construct the multi-variable regres-

sion. Suppose that we are given the tuples (xi, yi, zi)
n
i=1 and we seek a regression of the type

z = ax+ by + c. This is computed by considering the set W = {(xi), (yi),1} and solving for

a, b, c as: 
〈x, x〉 〈x, y〉 〈x,1〉

〈y, x〉 〈y, y〉 〈y,1〉

〈1, x〉 〈1, y〉 〈1,1〉



a

b

c

 =


〈x, z〉

〈y, z〉

〈1, z〉


One example of the above is given below- expression of population fraction below 6 as a

function of ST-fraction and literacy fraction for Shahpur gives us the coefficient of literacy

as −0.2, that of ST fraction as −0.004 and the constant term of 0.227. This indicates that

the ST fraction is actually negatively correlated with number of children, once literacy is

accounted for. Another interesting statistic is the r2 values for the fits of P-06 with male

and female literacy separately. This is shown below for all the talukas of Thane.
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Figure 13: The male and female literacy and P-06

6.1 Illustration on some more examples

We will take three examples and discuss how ‘good’ the average estimate of the dependent

variable could be.

1. In the case of the scatter diagram in Figure 14, one could make use of regression to

estimate the average possible marks of a student in ‘year 2’, given her marks in ‘year 1’.

In this case, the correlation coefficient (0.993) is very close to 1. The mean values for x

and y are 60.26 and 60.33 respectively while the corresponding standard deviations are

10.48 and 10.54 respectively. The graph that shows the average y value corresponding

to each x value is called the graph of averages. It can be seen in Figure 14, that the

average values guessed for y corresponding to different x values are very close to a line

and have very little variation across the line. Such a line is called the regression line.

The regression line is a smoothed version of the graph of averages.

2. In contrast, if the x variable represented a student’s score in mathematics and the y

variable respresented her score in physics, the correlation might not be as strong. For

a typical scatter plot as in Figure 15 for such data, the variance across every average

estimate of y for every x value is larger and the correlation coefficient is further away

from 1 (0.801 to be precise).

3. In the case of two uncorrelated variables (i.e., r ≈ 0) such a person’s height and his

average scores in mathematics, the average value of y given any particular value of x

will be more or less the same. The variance will also be large.
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Figure 14: A scatter plot for data similar to that in Figure 5, along with the regression
line. The mean values for x and y are 60.26 and 60.33 respectively while the corresponding
standard deviations are 10.48 and 10.54 respectively. The correlation coefficient is 0.993.

Figure 15: A scatter plot for the marks of students of some class in mathematics (x-axis)
against physics (y-axis), along with the regression line. The mean values for x and y are
60.34 and 60.01 respectively while the corresponding standard deviations are 9.82 and 12.06
respectively. The correlation coefficient is 0.801.
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It turns out actually that if x is one SD above its average µx, the corresponding predicted

value of y is r SDs above its average µy. The point (µx, µy) is in fact termed as the point of

averages. In the third example discussed above, with r ≈ 0, the predicted y hard changes

with the value of x. For the first example, the predicted y changes the most with the value

of x.

The linear regression method concerns itself with finding points on the regression line, for

a given table of data values with each row consisting of values of the independent variable x

and the dependent variable y for a particular data point. The following three steps comprise

the linear regression method.

1. Compute the correlation coefficient r between x and y. For the data in Figure 14, the

correlation coefficient was 0.993.

2. Convert any given value of x into its standard units. Multiply this number by r to get

the predicted value of y in its standard units. This step is essentially the regression

step. For example, with respect to Figure 14, consider x = 76. This number in standard

units will be 76−60.26
10.48

= 1.50. The predicted value of y in standard units will be 1.49.

3. Convert the value of y from standard units into normal units. The value of 0.993 for

y in standard units will correspond to 0.993× 10.54 + 60.33 = 70.80.

The regression line discussed above is for predicting value of y based on x (the usual

notion of line). It is also possible to perform regression to predict value of x based on value

of y, to yield another kind of regression line.

As an exercise, let us predict (using linear regression on the data in Figure 14) the marks

for a student in year 2, given that she obtained 63 marks in year 1. The predicted value for

marks in year 2 will be 60.33+
(
0.993× 63−60.26

10.48

)
×10.54 = 63.07, which compares favourably

with the actual value of y = 63.53.

As another exercise, with respect to the scatter plot in Figure 14, suppose a student is at

31st percentile in year 1. What is a good guess for this student’s percentile rank in year 2?

We note that the scatter diagram is ‘football shaped’ (or tilted oval) which is an indication

that the two variables roughly follow a normal distribution9 First we will determine the

standard units for x corresponding to the 31st percentile by looking up the value in standard

units corresponding to an area of 100−31
100

= 0.69 in standard normal Table ??. The value

happens to be around 0.50. Multiplying this by the correlation coefficient r = 0.993, we get

the standard units of the approximated y value to be 0.497. The corresponding percentile

rank can be again obtained using the normal table to be 100 × (1 − 0.6879) = 31.21, i.e.,

9Later, we will discuss techniques that will help verify such assumptions.
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around 31 percentile. Note that we really did not make use of any of estimates for mean or

standard deviation, since all computations dealt only with standard units.

What about the spread of values around the average predicted by linear regression? How

accurate is regression? For each point in the scatter diagram, the actual value of y will

not typically be on the regression line. The prediction error at a point x is defined as the

difference between the actual and predicted values of y at that point. Analogous to the

definition of the standard deviation, the spread for linear regression is measured as the RMS

of prediction errors and is called the RMS error. Linear regression should be suitable for

datasets for which the RMS error is very close to sum of the deviations from average across

all points. While RMS error can be used in the context of any prediction method, for the

case of linear regression, the RMS error can be simplified to the following formula:

erms = σy
√

1− r2 (2)

where σy is the SD for y.

On the other hand, if the prediction method were to always predict the overall average

µy of y regardless of the value of x, the RMS error would be the standard deviation σy of y

(by definition). We can readily see that if r ∈ (−1, 1), prediction using regression will always

yield a lower value of erms than will a naive prediction using the average µy.

Mathematically, if r = ±1, all the points must be on a line (with slope r), resulting in 0

prediction errors and erms = 0. On the other hand, if r = 0 and erms = σy. This is because

there is no linear relationship between x and y, implying that it does not help to know x

while predictin y; you can always guess y to be µy and could do no better. For any other

r ∈ (−1, 0) ∪ (0, 1), erms ∈ (0, σy). If erms is close to 0, it means that the predictions are

very accurate. Whereas, if erms is close to σy, the predictions must be far from accurate.

What about answer to a question such as ‘what percentage of all values are within one

unit of RMS error of the regression line for a fixed value of x’? The answer will be around

68%, assuming that the points approximately follow a normal curve and that the average

values of y for any given x approximately coincide with the point (x, rx) on the regression

line, so that one unit of RMS error approximately corresponds to one standard deviation. For

a football shaped scatter diagram, the normality condition can be assumed to hold for both

x and y as well as for all points with a fixed value of x. Using this information, let us answer

the following question: of all the students considered in Figure 14 who obtained a score of

65 in year 1, what percentage of them obtained over 67 in year 2? First of all, the average

marks in year 2, for students who obtained 65 in year 1, predicted using linear regression

will be 60.33 +
(
0.993× 65−60.26

10.48

)
× 10.54 = 65.06. The RMS error can be computed using
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(2) to be
√

1− (0.993)2 × 10.09 = 1.19. The question then reduces to ‘what percentage of

values on a normal curve with mean 65.06 and SD 1.19 are above 67?’ The answer to this

can be easily obtained by looking up the standard normal table for the percentage area that

is above 1.63 standard units, which is 100× (1− 0.9484) = 5.16%.

Further, a football shaped scatter diagram is homoscedastic, i.e., it has approximately

the same spread around the regression line for every value of x. To cite a practical example,

we would expect different divisions within a class to have the same mean and SD values for

scores in a particular year, irrespective of their sizes. Of course, divisions with smaller sizes

may have a smaller range of scores than larger divisions.

You can refer to the Appendix for a more detailed discussion on Regression including (a)

regularization (b) drawbacks of regression.

6.2 The Regression Effect

The regression effect is also called ‘regression to the mean’. This effect is essentially the fact

that for r ∈ (−1, 1), and both x and y in standard units, the predicted (based on linear

regression) y value will be closer to the mean than than the x value. This is because, if x

is 1 SD above average, then the predicted value of y will be r ∈ (−1, 1) SDs above average.

Thus, if a student performs exceptionally well in the first year, the predicted performance of

the student in the second year will not be as good. A corollary of this effect is that if y1 is

the predicted average value of y variable for a value x1 of the x variable, then the predicted

average value of x2 of the x variable based on value y1 will be less than x1.

6.3 SD Line

The SD line is a line that passes through the point of averages in a scatter plot and has slope

equal to the ratio of standard deviation of y to that of x multiplied by sgn(r). Points on the

SD line are the same in standard units for both x and y. It can be proved that if r = 1, the

SD and regression lines will coincide.

7 The Gini Coefficient

This is yet another interpretation of a tuple data (xi, yi) which is also used frequently as a

measure of inequality. Suppose that the tuple is a frequency data for a variable yi, e.g., the

income. In other words, suppose that for each i, there were xi persons with income yi. Such

data is frequently available, e.g., for professors in IIT-B and their scale of pay. The variable

yi need not always be economic, e.g., yi could be from 1-15, denoting the number of years
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Figure 16: The Lorenz plot for the company data

for formal education and then xi would be the number of people having i years of formal

education.

Now, we would like to measure the inequality in the data. Our first step is to assume that

the yi’s are sorted, i.e., y1 < y2 < y3 . . . < yn. Next, let Xi =
∑i

j=1 xi, in other words, Xi

is the number of people with values less than or equal to yi. Let X = Xn be the number of

people in the sample. Next, we define Yi =
∑i

j=1 xj ∗ yj, i.e., net value for the first i groups

of people. Let Y = yn, the total value of the population. The Lorenz curve is the plot which

begins at (0, 0) and plots (Xi/X, yi/Y ).

Example 9 A company has 100 employees at various levels. The number of employees at

each level and their salaries are given below:

No. of Employees 60 25 10 4 1

Pay (in lakh Rs.) 1 1.5 2.5 4 8

We thus see that X = 100, Y = 146.5 and the plots for the Lorenz curve will have the

following data:

0.00 0.60 0.85 0.95 0.99 1

0.00 0.41 0.67 0.84 0.95 1

The curve is shown in Figure 16.

It is easy to see (show this as an exercise) that yi/Y < Xi/X, i.e., the Lorenz curve

always sits below the 45-degree straight line joining (0, 0) with (1, 1). Note that in the above
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Figure 17: The Lorenz plot for Murbad literacy

example, if the salaries were more equal then the Lorenz curve will be closer to the 45-degree.

The Gini coefficient is the ratio of the area A between the Lorenz curve and the 45-degree

line to the area below the line. Since area under the line is 0.5, the Gini coefficient is exactly

2 · A. The Gini ceofficient is easily computed using the trapezium rule, as follows:

2 ·G =
n∑
i=1

xi
X

(xi − Yi) + (xi−1 − Yi−1)

2

This is available as a function gini.sci which inputs a matrix of two columns, where

the first column are the xi’s and the second column are the yi’s. Make sure that the second

column is increasing. It turns out that our company has a Gini coefficient of 0.245.

Let us try another example for aggregate data. For the Murbad taluka census data, we

have for each village i, its population (TOT-P) and the number of literates (P-LIT). The i-th

village literacy fraction yi is then given by PLITi/TOTPi. Let us denote xi by TOTPi. Let

us understand what this tuple data and its Gini coefficient (xi, yi) would mean. Since the

data is aggregated for each village, we will measure the inequality in the literacy levels across

villages. This will smoothen out the education levels within the village, at the individual

level. For Murbad, we see that the coefficient is 0.0878 which is quite small. This is also

evident from the histogram which is bunched around the mean. The plots appear below.

Warning 10 The Gini coefficient must be used with care. For aggregate data, it will tend

to under-compute the inequality. You should try this for say part II data, e.g., total agricul-

tural land. The Gini may be quite low but may hide that within each village, land may be

concentrated in very few households. So unless household data is available, the inequality in

land ownership cannot be measured.
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8 Probability

The notion of probability comes from a random variable, which is just an abstract data

source. Think for example, of a cannon which may be fired repeatedly. Every firing i will

yield a transit distance di of the cannon ball. Clearly, as there are variations in the sizes

and weights of the cannon ball, variations in the wind conditions, and so on, we will have

that the di’s will not be all equal. All the same, a repeated observation will indeed give us

an estimate of the range of the cannon.

We can now loosely define a random variable X as (i) an outcome set S, (ii) a collection

E of subsets of S, called the event set, and (iii) a probability function p : E → R, all

with certain properties. For E , we must have that (E1) S ∈ E , (E2) if A,B ∈ E , then so

are A ∩B and A, i.e., the complement of A. These conditions say that the subsets in E are

closed under boolean operations. More formally:

8.1 Basic Definitions

Definition 11 Sample space (S) : A sample space is defined as the set of all possible out-

comes of an experiment. Example of an experiment would be a coin pair toss. In this case

S = {HH, HT, TH, TT}.

Definition 12 Event (E) : An event is defined as any subset of the sample space. Total

number of distinct events possible is 2S , where S is the number of elements in the sample

space. For a coin pair toss experiment some examples of events could be

for at least one head, E = {HH,HT}

for all tails, E = {TT}

for either a head or a tail or both, E = {HH,HT, TH, TT}

Definition 13 Random variable (X) : A random variable is a mapping (or function) from

set of outcomes to a set of real numbers. Continuous random variable is defined thus

X : S → R

On the other hand a discrete random variable maps outcomes to a countable set (e.g. discrete

real numbers)

X : S → Discrete R
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Now, we move to the probability function Pr. Probability Pr is a function P : 2S → <.

It must have the following properties: (P1) Pr(A) ≥ 0 for all A ∈ E , (P2) Pr(φ) = 0 and

Pr(S) = 1, and (P3) if A ∩B = φ then Pr(A ∪B) = p(A) = p(B). More formally:

8.2 The three axioms of probability

The probability function Pr(.) satisfies the following three axioms:

1. For every event E , Pr(E) ∈ [0, 1]

2. Pr(S) = 1 where, S is the sample space. (Equivalently, P (∅) = 0)

3. If E1, E2, . . . , En is a set of pairwise disjoint events, then

Pr(
n⋃
i=1

Ei) =
n∑
i=1

Pr(Ei)

Example 14 The biased coin. Here we construct the random variable C(q) corresponding

to the biased coin. Let S = {H,T}, i.e, heads or tails, be the only possible outcomes of a

coin toss. Let E be the set of all possible (i.e., 2S) subsets of S, and let 0 < q < 1 be a fixed

real number. We define Pr by the table below:

set φ {H} {T} {H,T}

p 0 q 1− q 1

This merely says that the probability of the coin falling H is q, of T is (obviously) 1− q, of

not falling at all is zero, and of falling either H or T is 1.

Example 15 The cannon-ball. Here, let S = [100, 101], ie., the possible outcomes are

all real numbers between 100 and 101. Let E be the collection of all sub-intervals, open or

closed, of [100, 101] and their unions. For an interval [a, b] we define p([a, b]) = b− a. This

random variable CB simulates the falling of a cannon ball. It says that the cannon ball will

always fall between 100m and 101m from the cannon and the probability that a particular

trial falls within the interval [a, b] is in fact b − a. For example, the probability of the ball

falling between [100, 100.2] or [100.5, 100.7] is equal and 0.2. In other words, every outcome

between 100 and 101 is equally likely.

Two random variables X and Y are called independent if the outcome of one do not

affect the outcome of the other. Here are some dependent random variables. Let B be a box
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containing k red and n − k black balls. Let us first draw one ball and note its (random)

colour as X1 and throw it away. Next, let us draw a second ball and denote its colour by the

variable X2. Note that as individual random variables, X1 and X2 are identical, viz., the

probability of a red ball is k/n. However, they are certainly not independent. If we know the

outcome of one then we do know something more about the outcome of the other. Another

example is when X is the time that you will wait for your bus and Y is the time elapsed since

the last bus, measured at the instant that you show up at the bus-stop. Another example is

say the life-expectancy of one resident of a village with that of another in the same village.

We will not study independence formally but assume an informal understanding that

one should be careful before assuming that two random variables are independent.

We will denote by E0 the collection of all open/closed intervals and their disjoint unions.

Verify that it satisfies condition E1 and E2. When S is a finite set, we assume that E is the

collection of all subsets of S. Note that p is then defined by specifying its value on singletons,

i.e., p({s}) (this we abbreviate as p(s)) for all s ∈ S. For if A = {s1, . . . , sk}), then p(A) is

clearly p(s1) + . . .+ p(sk).

Next, let us construct new random variables from old. The simplest is the cross product.

If (S1, E1, p1) and (S2, E2, p2) are two random variables, then we can construct the product. We

define S = S1×S2, E as the sets which include E1×calE2, and define p(A×B) = p1(A)p2(B).

Example 16 Lets look at C(q) × C(r). This corresponds to two independent coin throws,

where one coin has bias q and the other r. We see that S = {HH,HT, TH, TT} and

p(HH) = p1(H)p2(H) = qr, while p(HT ) = p1(H)p2(T ) = q · (1− r), and so on.

We may construct CB×CB, i.e., the random variable corresponding to two independent

ordered cannon ball firings. Clearly the outcome set is [100, 101] × [100, 101], i.e., the unit

square situated at (100, 100). The probability p([100, 100.2] × [100.3, 100.4]) = 0.2 × 0.1 =

0.02. Thus the probability of the first shot falling in the first named interval and the second

in the second interval is 0.02.

There is another technique of constructing random variables. Let R = (S, E , p) be a

random variable and let S ′ be another set and f : S → S ′ be a onto function. We define the

new variable R′ = (S ′, E ′, p′), where S ′ is as above. We say that A′ ∈ E ′ iff f−1(A) ∈ E , and

when this happens, we define p′(A′) = p(f−1(A)).

Let us now construct our first important example and that is the Binomial random

variable Binom(q, n).

Definition 17 The variable Binom(q, n) has the outcome set [n] = {0, 1, . . . , n} with p({k}) =(
n
k

)
qk(1−q)n−k. The binomial random variable arises from the n-way repeated trials of C(q),
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i.e., C(q)× . . .× C(q). Note that sample space of this product is Sn which is the collection

of 2n sequences in H and T, corresponding to the fall of the i-th coin. Now consider the

map f : Sn → [n] where each sequence goes to the number of H’s in it. For example, for

n = 4, f(HHTH) = 3 while f(TTHH) = 2 and so on. Thus, the function f merely counts

the number of heads. Now, if we consider any k ∈ [n], then then f−1(k) is precisely the set

of sequences with k heads, and the probability of the occurence of k heads in an n-toss of a

biased coin then is precisely the number above.

Here is an example where Binom(q, n) will find use. Suppose that we must judge the

fraction q of tribals in a large village. One test, if we are unable to survey the whole village,

would be to take a sample of n people (more about sampling later), and count the number

of tribals, say k. Whence, if q were this fraction, then the chance of our meeting exactly

k tribals from a sample of n is exactly
(
n
k

)
qk(1 − q)n−k. We will see later that k/n is a

reasonable estimate of q.

9 Probability Density Functions

We now come to the important case of probability density functions. These arise, in

their simplest form, when the outcome set S is a simple subset of R, say an interval or the

whole real line, and the event set is E0. Let f : S → R be a smooth function such that (i)∫
S
f(x)dx = 1, (ii) f(x) ≥ 0 for all x ∈ S, and f(x) = 0 when x 6∈ S. We may define the

probability of an interval I as p(I) =
∫
I
fdx, i.e., the area under the curve f(x) over the

interval I. When we construct a random variable in such a manner, f is called its probability

density function. In a crude sense, the probability that an outcome of the random variable

is between x and x+ dx is f(x)dx.

Example 18 The uniform random variable. Let S = [0, 1] and let f(x) = 1 for

x ∈ [0, 1] and zero otherwise. We see that for any sub-interval [c, d], p([c, d]) =
∫ d
c

1.dx =

d − c. If we wished to construct the uniform random interval over another interval [a, b],

then f(x) = 1
b−a for x ∈ [a, b] would do the job, and then, as expected, p([c, d]) = d−c

b−a .

Example 19 Here is a more interesting case. Let S = [0, 1] and let f(x) = 2x for x ∈ S and

zero otherwise. We see that
∫
S

2x.dx = (x2)1
0 = 1− 0 = 1. Also, f(x) ≥ 0 for all x, and thus

f defines the pdf of a random variable. We see that p([0, 0.5]) = 1/4 while p([0.5, 1]) = 3/4

and thus this random variable prefers higher values than lower ones.

The Normal density function.
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We now come to the famous Normal or Gaussian random variable. The outcome set for

this is R, the whole real line. Let

f(x) =
1√
2π
e
−(x2)

2

This is a curious function which arises from classical mathematics and is plotted as the red

curve in the image below (from wikipedia). We see that the curve is smooth and symmetric.

The integral
∫
R f(x)dx is known to be 1. We see that the normal random variable allows for

all real numbers as outcomes but prefers smaller numebrs (in absolute value) to bigger one.

The integral values of
∫ b
a
f(x)dx are rather hard to calculate analytically and are usually

tabulated. We see for example that p([−2, 2]) =
∫ 2

−2
f(x)dx = 0.95, roughly. As can be seen

from the graph below, most of the area under the red curve is indeed between −2 and 2. In

terms of randomness, we see that the chance that the random outcome is in [−2, 2] is about

95%.

The above denisty function is usually denoted by N(0, 1). The general function is N(µ, σ)

and is given by:

N(x;µ, σ) =
1

σ
√

2π
e
−((x−µ)2)

2σ2

Assuming that
∫
f(x)dx = 1, it is easily shown that N(x;µ, σ) also gives a density

function. This is called the normal density function with mean µ and variance σ2.

The figure shows some plots for various µ and σ2. We see that µ decides the center value

around which the random variable is symmetric. Increasing σ increases the spread of the

outcomes. For example, ∫ 2

−2

N(x; 0, 2)dx =

∫ 1

−1

N(x; 0, 1)dx = 0.65

Thus, the spread of N(0, 2) is more than N(0, 1).

The obvious question is: where and how do normal random variables arise? The answer

is really from the Binomial case when n is large and x is taken to be k/n − 0.5. But more

on that later.

The density function approach is an important analytic tool in understanding many other

random variables. For example, we may wish to understand how is the maximum score in a

quiz for a class distributed, or for example, the distribution of the mean of n repeated trials

and so on.

Let us look at the first problem. Let R1, R2 be two variables given by density functions

f1, f2, then the outcome set of the cross-product is clearly (x, y) with x, y ∈ R, or in other
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Figure 18: The Normal density function (from wikipedia)

Figure 19: The cross-product of two uniform variables.

words, the plane R2. Whence, the proabability that x ∈ I and y ∈ J would be
∫
I
f1dx ·∫

J
f2(y)dy. Thus, the density function for the cross-product is merely f(x, y) = f1(x)f2(y)

with the outcome set R× R.

Example 20 Let us pick two random numbers uniformly between 0 and 1, say x1 and x2.

Let x = max(x1, x2). What is the probability that 0 ≤ x ≤ b? To solve this, let us look at the

random variable z = (x1, x2) where each x is uniform over [0, 1]. Thus, the density function

of z = (x1, x2) is merely f(x1, x2) = f1(x1)f2(x2), which is 1 · 1 = 1. Note that the function

f is zero outside the unit square and that
∫ 1

0

∫ 1

0
f(x1, x2)dx1dx2 = 1.

Next, we see that for the maximum of (x1, x2) to be less than b, both x1 ≤ b and x2 ≤ b,

and thus, the probability of this event is b2. See Fig 9 below.

One common operation is a scale and translate of an existing random variable. Thus,

for example, Y = aX + b, where f(x) is the density function for X. In other words,

f(x)dx is the probability that X lies in the interval [x, x + dx]. Now, if Y ∈ [y, y + dy]

then X ∈ [y−b
a
, y−b

a
+ dy

a
]. Thus if fY (y) is the probability density function of Y , then
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Figure 20: The temperature at Shimla as see by a thermometer

fY (y) = 1
a
f(y−b

a
). We see for example, that

N(x;µ, σ) =
1

σ
√

2π
e
−((x−µ)2)

2σ2 =
1

σ
N(

x− µ
σ

; 0, 1)

In other words, the Y = N(µ, σ) random variable is related to the the variable X = N(0, 1)

by Y = σX + µ.

Another common operation is restriction. Assume that X is a random variable with

density function f(x) and outcome set S ⊆ R. Now consider the random variable Y , where

Y only reports X if it lies in a sub-range [a, b] of S. For example, Let X represent the

temperature at Shimla on 1st of January over the years. However, our thermometer measures

temperatures in the interval [−3, 15] and reports an error if the temperature lies outside this

interval. Let Y be the reported temperature by this thermometer, whenever an error does

not occur. Thus Y is a restriction of X to the interval [−3, 15]. Now suppose that X was

actually N(2, 4), i.e., normal with mean 3 and standard deviation 4. What would be the

density function of Y ? If fY is the density function of Y , then clearly, it must be zero outside

[a, b]. Next, it must mimic the shape of f within this interval, i.e., must be a multiple of f ,

i.e., fY (x) = αf(x) when x ∈ [a, b], for a constant α. This is determined easily by requiring

that
∫ b
a
fY (x)dx = α

∫ b
a
f(x)dx = 1. Thus, we see that α = 1/

∫ b
a
f(x)dx.

For our example, the Shimla temperature variable is shown in blue in Figure 9 below.

The range −3, 15] is marked in red. α turns out to be 1/0.896 which is 1.11. Thus, fY is a

scaled version of f in the interval [−3, 15] and is shown in red.
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10 Data and probability models

The basic use of probability models is to simulate real data and to predict the effect of

certain interventions with a level of confidence. Here is a concrete example.

Example 21 A literacy program was implemented in 120 revenue villages in the eastern

part of Shahpur, which has a total of 222 revenue villages. The program entailed a teacher

training program, introduction of new kits and so on. The program director wishes to a quick

and economical mid-term appraisal of the program now that 1.5 years have elapsed. Please

come up with a project plan for this task and list the technical outcomes.

It is clear that this calls for understanding the status of the villages which were a part

of the program and compare it with others in the taluka which were not. Next, perhaps, a

sample of the 120 program villages will be taken up for a detailed (and expensive) survey. The

selection of these villages is crucial to make a concrete assertion, with a level of confidence,

on the success of the program. It is in this confidence assertion where known probability

models become very useful, for here these calculations can be done a priori and a testing

regime designed based on these assumptions.

The first task is of course, to check if the data that you have matches with some known

probability density function. We shall briefly examine this question. The first point is to

check that most standard density functions can be programmed on a computer and repeated

trials generated. In other words, for any density function, we may produce a virtual cannon

which will fire according to that density function. For the standard ones, such as Binomial or

normal, Scilab provides ready-made function grand with appropriate arguments and inputs,

see Section 18. Let us use grand to generate 200 random numbers distributed in the Binomial

density function with N = 100 and q = 0.6. After generating this sample of 200, let us plot

it as a histogram for a width of 2, i.e, {k, k + 1}, for even k. Let us also plot the expected

number of occurences, which will be 200 ∗ (pr(k) + pr(k+ 1)), where pr(k) is the probability

thaty the bionomial random variable of q = 0.6 and N = 100 will yield k. This combined

plot is shown below in Fig. 10. We see fairly nice things in the plot that the number of

actual outcomes fairly match with the predicted numbers. Moreover, the maximum is close

to 60 = 0.6 ∗ 100.

We try it next with the normal density function with mean 1 and SD 0.6. We plot for

1200 trials and 200 trials as below in Fig. 10. We see the important outcome that as the

number of trials increase, the observed numbers match with the predicted numbers much

better.

We now consider the case of real data and checking if it matches known density functions.

Let us start with the case of number of households per village in Murbad taluka. After
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Figure 21: The binomial sample and expectation

Figure 22: The normal trial and expectation
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Figure 23: The normal fit to Murbad and Shahpur HH data

several attempts, we see that N(135, 60), i.e., the normal denisty function with mean 135

and standard deviation 60 ( plotted in blue) fits the data fairly well. The actual mean and

SD of the data set are 145 and 85 respectively. We plot that in red. As we see, this is not

as good for many reasons. Firstly, we see that the data naturally has a truncation effect,

i.e., there cannot be any villages with negative number of households. This truncation also

causes a change in the variation which is not very predictable. So, the question remain,

is the observed data from N(135, 60) or not and with what confidence? Such questions are

important and are tackled through specific tests. One of them is the Kolmogorov-Smirnov

test which we will discuss later. We also note that the Shahpur households dont quite fit

the normal density function.

We may try the same with some other attributes. Below, in Fig. 10 we have the female

literacy fraction for various villages of Shahpur. The mean and SD of the data are 0.428 and

0.136 respectively. This is plotted in blue. The best suited (according to my eyes) is with

mean and SD 0.43 and 0.12 respectively. This is plotted in magenta. Of course, not all data

sets are so normalizable. See for example, the ST-fraction for Shahpur. We see that far from

being close to normal, it in fact shows bi-modal behaviour, i.e., with two peaks, at close to

0 and at close to 1. This indicates that Shahpur villages are fairly divided into those which

are largely ST and those which are largely non-ST.

Example 22 Write scilab code to obtain each of the above plots. Also, consider the question

of verifying whether ST communities tend to have better sex-ratios than non-ST communities.

How would you test the above proposition?
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Figure 24: Shahpur female literacy fraction and ST fraction
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11 Functions and expectation

In this section, we will delve deeper into the theory of random variables. For the purpose

of this section, we will assume that the outcome set of our standard random variable is R
and is given by density functions f and so on. In other words, for an interval I, we have

p(I) =
∫
I
f(x)dx.

Frequently, we have a function g : S → R. This g may represent a value g(s) that we

attach to each outcome s ∈ S. For example, S = {HH,TH,HT, TT}, and G(HH) = 4

while g(TT ) = g(TH) = g(HT ) = −1. This may model the outcomes of a game of two coin

tosses with two heads fetching Rs. 4 while any other outcome resulting in a loss of Rs. 1.

Definition 23 Given such a function g on the outcomes of a random variable X, we define

the expectation EX(g), or simply, E(g) =
∑

s g(s)p(s), or as the integral
∫
S
f(x)g(x)dx.

Example 24 For the example above, for an unbiased coin, we have p(HH) = p(HT ) =

p(TH) = p(TT ) = 0.25, whence E(g) = 0.25. Thus, the games is expected to benefit you Rs.

0.25 every time you play it.

Example 25 Let X be the uniform density function on [0, 1] and let Y = X × X. Thus

fY (x1, x2) = 1 for all x1, x2 ∈ I. Let g(x1, x2) = max(x1, x2). Let us compute E(g). We see

that the set S may be divided into two halves along the diagonal. The first domain would be

Si where x1 ≥ x2 and the other, where x2 ≥ x1. Clearly

E(g) =

∫
S

g(x1, x2)f(x1, x2)dx1dx2 =

∫
S1

g(x1, x2)dx1dx2 +

∫
S2

g(x1, x2)dx1dx2

By symmetry, both integrals must be equal and we evaluate the first one. We see that∫
S1

g(x1, x2)dx1dx2 =

∫ 1

x1=0

∫ x1

x2=0

x1dx1dx2 =

∫ 1

x1=0

x2
1dx1 = 1/3.

Thus E(g) = 2/3. We should recall that the maximum of two uniform random variable

is also a random variable Z with outcome set [0, 1] and density function 2x. In this case,

g(x) = x and the desired number of merely EZ(x) for the random variable Z. We see that∫
[0,1]

2x · xdx = 2/3.

Let us note some elementary properties of expectation.

• E(g1 + g2) = E(g1) + E(g2). This follows from the linearity of integration.

• If Y = aX + b then µY = aµX + b. This follows from the previous item above.
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• If Y = aX + b, then σ2
Y = a2σ2

X . This is an honest calculation:

σ2
Y =

∫
fY (y)(y − µY )2dy

= 1
a

∫
f(y−b

a
)(y − µY )2dy

=
∫
f(x)(ax+ b− µY )2dx (after substituting y = ax+ b)

= a2σ2
X

Definition 26 The mean µX of a random variable X with outcome set contained in R is

defines as E(x), i.e., the expectation of the identity function g(x) = x. The quantity µX is

a real number. The variance σ2
X is defined as E((x− µX)2).

Let us now compute the means and variances of the standard random variables.

• Uniform. Here f(x) = 1 on the outcome set [0, 1]. We have E(x) =
∫ 1

0
xdx =

[
x2

2

]1

0
=

1/2. This is expected. We have the variance as

∫ 1

0

(x− 1

2
)2dx =

[
(x− 1

2
)3

3

]1

0

=
1

12

• Binomial. We have p(k) =
(
n
k

)
qk(1− q)n−k and thus

µ =
∑n

k=0 k ·
(
n
k

)
qk(1− q)n−k

=
∑n

k=1 n ·
(
n−1
k−1

)
qk(1− q)n−k

= nq
∑n−1

j=0

(
n−1
j

)
qj(1− q)n−1−j

= nq

This establishes the expected value nq as the mean. The variance is also similarly

calculated and equals nq(1− q).

• Normal N(µ, σ).By the linear combination result, we only need to prove this forN(0, 1),

i.e., the standard normal. Now, x · 1√
2π
e
−x2
2 is an odd function, whence its integral must

be zero. Thus the mean of the standard normal is indeed zero. The mildly harder case
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is the variance. We see this in the following steps:

σ2 =
∫∞
−∞ x

2 · 1√
2π
e
−x2
2 dx

= −
∫∞
−∞ x ·

d
dx

( 1√
2π
e
−x2
2 )dx

=
[
−x · 1√

2π
e
−x2
2

]∞
−∞

+
∫∞
−∞

1√
2π
e
−x2
2 dx

= 1

Here is another expectation which is very important in the theory of random variables,

esp. in repeated trials and the structure of the normal distribution.

Definition 27 The moment generating function (mgf) φX(t) of the random variable X

given by the density function f is E(etX) =
∫
f(x)etxdx.

In fact, the mgf of a function f determines (more or less) determines it uniquely. We present

three results on the transform.

• If X is normal with mean µ and variance σ2 then φX(t) = eµt+
σ2t2

2 . We see this in the

following steps:

φX(t) =
∫∞
−∞ e

tx · 1
σ
√

2π
e
−(x−µ)2

2σ2 dx

= 1
σ
√

2π

∫∞
−∞ e

2σ2tx−(x−µ)2

2σ2 dx

= 1
σ
√

2π

∫∞
−∞ e

−(x−(µ+σ2t))2

2σ2 e
t2σ4+2µσ2t

2σ2 dx

= e
t2σ2

2
+µt

• Suppose that X1 and X2 are independent random variables with density functions f1(x)

and f2(x), and mgfs φ1(s) and φ2(s). Let Y = X1 +X2, then the density function fY is

given by fY (y) =
∫∞
−∞ f1(x)f2(y − x)dx. This is called the convolution of f1 and f2.

This is readily seen by considering the random variable X1×X2 with density function

f1(x1)f2(x2). Let FY (y) denote the probability that x1 + x2 ≤ y. We see that:

FY (y) =
∫∞
x1=−∞

∫ y−x1
x2=−∞ f1(x1)f2(x2)dx1dx2

=
∫∞
x1=−∞ f1(x1)dx1

∫ y−x1
x2=−∞ f2(x2)dx2

Now differentiating under the inetgrals gives us:

fY (y) = d
dy

(FY (y)) =
∫∞
x1=−∞ f1(x1)dx1

d
dy

[∫ y−x1
x2=−∞ f2(x2)dx2

]
=

∫∞
x1=−∞ f1(x1)dx1f2(y − x1)
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The mgf of fY (y) is the product φY (t) = φ1(t) · φ2(t). This is seen by:

φY (t) =
∫∞
y=−∞ e

ty ·
∫∞
x=−∞ f1(x)f2(y − x)dxdy

=
∫∞
x=−∞

∫∞
y=−∞ e

−syf1(x)f2(y − x)dydx

=
∫∞
x=−∞ e

txf1(x)
[∫∞

y=−∞ e
t(y−x)f2(y − x)dy

]
dx

=
∫∞
x=−∞ e

txf1(x)φ2(t)dx

= φ1(t)φ2(t)

• If for i = 1, . . . , n, the variables Xi are normal with mean µi and variance σ2
i then so

is the variable Y = X1 + . . . + Xn and it has mean
∑

i µi and variance
∑

i σ
2
i . This

directly follows from the above two facts. We see that

φY =
∏
i

e
t2σ2i

2
+tµi = e

t2
∑
i σ

2
i

2
+t

∑
i µi

This is clearly the transform of the normal random variable for the said mean and

variance.

12 Repeated trials and normality

Let us now consider a random variable X and for i = 1, . . . , n, let Xi be an independent

trial of X. This corresponds to, e.g., a repeated firing of a cannon, or a sampling of a few

villages of Murbad and so on. Let Y =
∑

iXi and X =
∑
iXi
n

.

Lemma 28 The mean µY of Y equals nµX and its variance σ2
Y = n · σ2

X . For X, we have

µX = µX and σ2
X

= σ2
X/n.

.

The linearity of expectation explains most things. The only calculation is the calculation

of the variance of the sum C of two independent random variables, say A and B, which we
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do now.

σ2
C = E((c− µC)2)

= E((a+ b− µA − µB)2)

= E((a− µA)2) + E((b− µB)2) + 2E((a− µA)(b− µB))

= σ2
A + σ2

B +
∫
A

∫
B
fA(a)fB(b)(a− µA)(-

¯
µB)dadb

= σ2
A + σ2

B + {
∫
A
fA(a)(a− µA)da}{

∫
B
fB(b)(-

¯
µB)db}

= σ2
A + σ2

B

Thus, we see that the variance of the variable X diminishes with n while its mean remains

invariant. This, in fact, is the basis of much of sampling. Let us try this in an example.

Example 29 A team of CTARA students studied 12 randomly chosen villages of Shahpur.

In that exercise, they observed the mean female literacy of the 12 villages to be 0.36. Given

that the census data puts female literacy as normal with mean 0.43 and standard deviation

0.13, what is the probability that the mean of 12 independent samples should come out to be

0.36 or below?

We see that X = X1+...+X12

12
should be normal with mean 0.43 and variance 0.13/

√
12 =

0.038. We see that 0.43− 0.36 is 0.07, i.e., 1.8 · σX . We use cdfnor(-1.8,0,1) in Scilab to

get 0.035. In other words there was a 3.5% chance that if the census data was correct, the

team would have the above observations from 12 villages. Thus this puts into grave doubt

either the census data or the methodology used by the team.

Consider next Zn = X1+...+Xn−nµX
σX
√
n

, i.e., the sum of independenat repeated trials of a

variable X scaled and translated by some constants. We see that µZn = 0 and σ2
Zn

is

nσ2
X/nσ

2
X = 1. Thus Zn has mean 0 and variance 1.

Central Limit Theorem. For a wide class of random variables X, as n → ∞, the

variable Zn approaches the standard normal N(0, 1). Thus, the simple repeated sum
∑n

i=1 Xi

also approaches the normal density function with mean nµX and variance nσ2
X .

The good thing about the above theorem is that it applies to a wide variety and almost

certainly to most commonly occuring density functions.

Let us conduct an experiment to verify the Central Limit Theorem. Let X be the simplest

of all random variables, viz., with the uniform random variable with outcome set [0, 1]. We

see that E(X) = 0.5 and σ2
X = 1/12. Let us consider n trials and the variable

Zn =
X1 + . . .+Xn − nµX

σX
√
n

=
X1 + . . .+Xn − n/2√

n/12
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Figure 25: 500 trials of a 10-uniform-sum

We make 500 trials and plot the observed frequencies for n = 10, i.e., Z10. The blue line is

the expected frequencies for the normal curve. We see a close match.

Example 30 The basis for assuming normality in social data. Scientists studied

for Thane, the passing percentages of girls and boys in their school years and considered all

factors such as economic conditions, social status, distance from school and so on, and came

out with the following probability estimates for a girl/boy to pass the 10th standard exam:

Xth passing

ST non-ST

Boy 0.13 0.33

Girl 0.21 0.26

Next, consider the village of Dhasai with population structure given below. Let X be the

random variable modelling the number of Xth standard pass adults.

Dhasai Adult Population

ST non-ST

Male 123 312

Female 133 286
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It is clear that if X11X12, X13, X14 are random variables expressing if a given boy/girl who

is ST/non-ST is Xth pass, then X is merely the sum of repeated trials 123 copies of X11,

312 copies of X12 and so on. Now if Yij are these repeated sums then the theorem says that

each of these is close to being normal. Thus X, the sum of the Yij’s is also almost normal.

This settles the argument that the number of Xth pass (or its fraction) in Dhasai should be

normal. However, it does not answer why should this quantity for another village Mhasa be

distributed by the same mean and variance as Dhasai. This is argued as follows. Suppose

that the number of adults Nij in Murbad taluka of various categories is known. Suppose next

that a village has some n number of adults. Then we may assume that the composition of

this village by various categories is obtained by n independent trials on the whole Murbad

taluka population. If that is valid, then a further counting of Xth pass may proceed along

earlier lines, giving an argument why the Xth pass fractions across all villages be distrbuted

by a common normal random variable.

This is partly the basis in assuming many of these social variables as normal. There are of

course, serious limitations to this approach. First is the non-independence of many attributes

of individuals with those in his/her village, community etc., as pointed out earlier. Secondly,

as we saw in Shahpur the ST-fraction in villages is not normally distributed. In fact, there

is a divergence towards the extremes of 0 and 1. All the same, the literacy fractions do show

some match with a common normal variable. This may be due to some other mechanisms at

work which are common to both ST and non-ST.

13 Estimation and Hypothesis testing

Let us now to the question of estimating a parameter of a random variable of a known type.

The simplest example is when the elements of a population P may be divided into two

disjoint parts, say A and B and we are required to estimate q = |A|/|P |. Standard examples

include estimating the fraction of ST people in Murbad, literate people in a village and so

on. Note that the parameter space for q is Q = [0, 1] and we must estimate the correct q by

conducting some experiment. The standard procedure would be to sample n items of P and

count the number k of elements who actually belong to A. The the outcome set S of our

experiment is S = {0, 1, . . . , n}. Now we devise the estimator e : S → Q as e(k) = k/n. In

other words, if there were k on n elements in A, then our estimate of q would be k/n. Let

us try and understand this process in more detail, through an example.

Consider the situation when we have made 10 trials and observed 3 successes. For

various possible values of q, let us calculate and plot the probability of the event of k

successes happening. This is clearly the Binomial density function Bin(q, 10) and computing
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Figure 26: Estmating q when k=3 and n=10

p(3) =
(

10
3

)
q3(1 − q)10−3 for various values of q. The plot in Figure 13. We see that the

probability of the event k = 3 is indeed maximized when q = 0.3, although the probability

itself is only about 0.266. Moreover, for q = 0.25, the probability of the event k = 3 is about

0.25 which is not far from 0.266.

Let us first prove the simple fact that q = k/n is indeed where the probability p(k) is

maximum. Let us differentiate
(
n
k

)
qk(1− q)n−k and equate this to zero to obtain q.

d
dq

[(
n
k

)
qk(1− q)n−k

]
= 0(

n
k

) [
kqk−1 − (n− k)(1− q)n−k−1

]
= 0

kqk−1(1− q)n−k − (n− k)qk(1− q)n−k−1 = 0

k(1− q)− (n− k)q = 0

k − nq = 0

Thus q = k/n is where the derivative is zero. It is easy to check that this is a maxima. Thus

our function e : S → Q with e(k) = k/n actually estimates a q such that the probability of

the outcome k is maximized. Such an estimator is called the parameter q ∈ Q is called as

the maximum likelihood estimator of q.

The next matter is of confidence. Suppose that, a priori, we had no guidance on the

possible values of q and that every q ∈ [0, 1] was equally possible. We then plot p(k) for all

values of q ∈ [0, 1]. This is plotted in Fig. 13. We may well assert that q = 0.3, but there

is no reason to doubt that q = 0.28, in fact. Let us quantify our assertion that q = 0.3 by

looking at the area under the curve in the interval [0.25, 0.35]. We see that this is roughly

31% of the total area. Thus, assuming that all values of q were equally likely, we may assert

that we have 31% confidence in our assertion.
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Figure 27: p(3) for all q and the confidence interval [0.25, 0.35]

Figure 28: p(16) and n=50 for all q and the confidence interval [0.2, 0.3]

How do we strengthen our assertion? The first option is to widen the interval. For

example, we check that for the interval [0.2, 0.4] we have a larger confidence of 56%. The

other, and wiser, option is to increase the number of trials. Suppose now that n = 50 and

k = 15 and thus q = 0.3. Thus the estimated value remains the same. However, the q-plot

changes dramatically, as seen in Fig. 13. Also, now the confidence in the interval [0.2, 0.4]

goes to roughly 91%.

All of this crucially depends on the fact that all q ∈ [0, 1] were equally likely. Suppose, a

priori, we knew that q is in fact in the interval [0.2, 0.8]. In which case, our confidence in our

assertion would increase to area(0.2, 0.3)/area(0.2, 0.8) which is 93%. In general, we have a

general a priori probability density f on [0, 1] for q. In such a situation, the confidence for

the interval [a, b] when we have observed k successes for n trials would be:∫ b
a
f(q)

(
n
k

)
qk(1− q)n−kdq∫ 1

0
f(q)

(
n
k

)
qk(1− q)n−kdq
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Such an analysis is called a Bayesian analysis since it bases its estimate of q by conditioning

on the case for each q ∈ [0, 1].

13.1 Bayesian Estimation

13.1.1 Conjugate prior

Suppose we have a multivariate bernoulli distribition of the µ’s and let Pr(µ = µ1) = Pr(µ =

µ2) = . . . P r(µ = µk) = 1
k
. As an example condider the toss of a dice. Suppose at ∞, all

observations are say a particular value Vi then, we will have Pr(µ = µ1) = 0, . . . P r(µ =

µi) = 1 . . . P r(µ = µk) = 0

Using Bayes rule

Pr([µ1 . . . µk]|D) =
Pr(D|µ̄)Pr(µ̄)∑
µ̄′
Pr(D|µ̄′)Pr(µ̄′)

If Pr(µ) has a form such that Pr(µ|D) has the same form, we say that Pr(µ) is the

conjugate prior to the distribution defining Pr(D|µ).

Some of the conjugate priors that we will see are

Dirichlet and Multivariate Bernoulli

Beta and Bernoulli

Gaussian and Gaussian

13.1.2 Dirichlet prior

Prior P (µ) ∈ [0, 1]&
∫ 1

0
p(µ)dµ = 1

Now, P (µ|X1, X2, ..Xn) = P (X1,X2,..Xn|µ).P (µ)∫ 1
0 P (X1,X2,..Xn|µ).P (µ)dµ

= µn1 (1−µ)n2∫
µn1 (1−µ)n2dµ

= µn1(1− µ)n2 (n1+n2+1)!
n1!n2!

HW. If P (µ) had the form µa−1(1−µ)b−1(a=b−1)!
(a−1)!(b−1)!

what will be the form of P (µ|D)? P (µ|X1, X2, ..Xn) =
µa−1+n1 (1−µ)b−1+n2 (n1+n2+a+b−1)!

(n1+a−1)!(n2+b−1)!
Beta(µ|a+ n1, b+ n2)

so P (µ = 1) Beta(µ|1, 1) Expected value of Beta E(Beta(µ|a, b)) = a
a+b

Why it is reasonable:

• E[µ]Beta(µ|a,b) = a
a+b

is intuitive

• a=b=1 gives uniform distribution

• Form of the posterior and prior are the same.
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• As n1 + n2 ← ∞, spread of the distribution ← 0, a and b becomes immaterial.

( n1+a
n1+n2+a+b

= n1

n1+n2
)

E(µ)
B(µ|n1+a,n2+b)

← ˆµML

ˆµMAP = argmax
µ

P (µ|D) = a+n1−1
a+n1+b+n2−2

As n1, n2 ←∞, ˆµMAP = ˆµML

P (Xn+1, ..Xn+t|µ) =
∏t

i=1 P (Xi+1|µ)

P (Xn+1|X1..Xn) =
∫
P (Xn+1|µ)P (µ|X1..Xn)dµ =

∫
µXn+1(1− µ)1−Xn+1P (µ|X1..Xn)dµ

= E[µ] if Xn+1 = 1

= 1− E[µ] if Xn+1 = 0

Beta(µ1,µ2|a,b) = µ1µ2(n1+n2−1)!
(a−1)!(b−1)!

Dir(µ1, µ2, ..µk|a1, a2, ..ak) =
∏
i µ
ai−1
i

√∑
j aj∏

j
√
aj

E(µ)Dir = [ a1∑
i ai

a2∑
i ai
.. ak∑

i ai
]T

Expression for ˆµBayes = E(µ) = [ a1+n1∑
i ai+ni

a2+n2∑
i ai+ni

.. ak+nk∑
i ai+ni

]T

Expression for ˆµML = E(µ) = [ n1∑
i ni

n2∑
i ni
.. nk∑

i ni
]T

Expression for ˆµMAP = E(µ) = [ a1+n1−1
(
∑
i ai+ni)−K

a2+n2−1
(
∑
i ai+ni)−K

.. ak+nk−1
(
∑
i ai+ni)−K

]T

P (Xn+1|X1..Xn) = [E(µ)] if Xn+1 = Vi

Dirl,j(µ
l
1ij
..µllij|a

l
1ij
..al1ij) =

∏
i(µ

l
i,j)

ali,j−1∏
i Γ(ali,j)

Γ(ali,j + (al2,j) + ..(alk,j)

E(µ)Dir = [
al1,j∑
i a
l
i,j

alk,j∑
i a
l
i,j
..

alk,j∑
i a
l
i,j

]T

(µlj)Bayes = [
al1,j+n

l
1,j∑

i a
l
i,j+n

l
i,j

al2,j+n
l
2,j∑

i a
l
i,j+n

l
i,j
..

alk,j+n
l
k,j∑

i a
l
i,j+n

l
i,j

]T

(µlj)MAP = [
al1,j+n

l
1,j∑

i(a
l
i,j+n

l
i,j)−Kl

al2,j+n
l
2,j

(
∑
i a
l
i,j+n

l
i,j)−Kl

..
alk,j+n

l
k,j

(
∑
i a
l
i,j+n

l
i,j)−Kl

]T

(µlj)Bayes = [
al1,j+n

l
1,j∑

i a
l
i,j+n

l
i,j

al2,j+n
l
2,j∑

i a
l
i,j+n

l
i,j
..

alk,j+n
l
k,j∑

i a
l
i,j+n

l
i,j

]T

Assume X is the event of a coin toss. Let X1=0 (TAILS say), X2=1, X3=0, X4=1, X5=1.

We are interested in predicting the event X6=1 given the above. This can be calculated by

different approaches. The ML, MAP and the Bayes Estimator are called the pseudo Bayes,

and Bayesian estimator is called the pure Bayes.

Maximum likelihood

ˆµML is the probability of X = 1 from the data.

P (X6|X1..X5) = ˆµML
X6(1− ˆµML)(1−X6)
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MAP

ˆµMAP is the probability of X = 1 from the data.

P (X6|X1..X5) = ˆµMAP
X6(1− ˆµMAP )(1−X6)

Bayes Estimator

ˆµbayes is the probability of X = 1 from the data.

P (X6|X1..X5) = ˆµbayes
X6(1− ˆµbayes)

(1−X6)

Bayesian method

P (X6|X1..X5) =

∫ 1

0

µX6(1− µ)(1−X6)P (µ|X1..X5)dµ

The explanation for this equation is as follows:

P (X6|X1..X5) =

∫
P (X6|µ,X1, ..X5)P (µ|X1..X5)P (X1..X5)dµ

P (X1..X5)

this marginalises on the probability µ. Simplifying futher,

P (X6|X1..X5) =

∫
P (X6|µ,X1, ..X5)P (µ|X1..X5)dµ

Thus

P (X6|X1..X5) =

∫ 1

0

µX6(1− µ)(1−X6)P (µ|X1..X5)dµ

13.2 Hypothesis Testing

13.2.1 Basic Idea

Let us now turn the tables and assume that a claim has been made, say that q = q0. It is

our task to check the validity of the claim. Such a claim is called the null hypothesis and

is denoted by H0. Our task is to design an experiment with outcome set S and based on the

outcome, either reject or accept the hypothesis. There are clearly two types of error we can

make and this is given in the table below:

H0 Our assertion Type of Error

True False Type I

False True Type II
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Our strategy will be as follows. We will design an experiment and specify an event set

E0 ⊆ S. If the outcome of the experiment o ∈ E0 then we assert with some confidence

that H0 is false. This takes care of Type I errors of labelling something as false when it was

actually true. Now consider Type II errors. We construct another hypothesis H1 so that

both H0 and H1 cannot simultaneously hold. For H1 we construct an event E1 ⊆ E0 such

that if the outcome o ∈ E1 then we can claim with confidence that H1 is true. Since H1

is true, H0 is certainly false, and we would have concluded from our experiment that H0 is

false. Thus, the correct task is to design the experiment so that if H0 were false then E1

should be as large as possible.

Thus, the task is to design an experiment and an event E0 and conduct the experiment.

Next, we observe the outcome o. Based on whether the outcome o ∈ E0 or not:

• for a fixed and small α conclude that H0 is false with a confidence 1− α.

• produce another hypothesis H1 and an event E1 ⊆ E0 which contradicts H0 and a

small number β, o ∈ E1 asserts that H1 holds with confidence 1− β.

• remain silent and plan for further experimentation.

Let us suppose that the null hypothesis is H0 ≡ q0 = 0.4. We are now supposed to built

an event set E0 which will help us refute the hypothesis. Let us suppose that we intend to

conduct 100 trials and observe k, the number of successes. Thus S = {0, 1, . . . , 100}. We see

that if the hypothesis is true then the sum
∑50

i=30B(100, 0.4)(i) = 0.96, thus we chooose E0

as the event set [0, 29] ∪ [51, 100] ⊆ S, and α = 5%. Clearly if the outcome o ∈ E0, then we

can reject the claim H0 with confidence 1 − α, for if the hypothesis were true than o ∈ E0

is a very unlikely event. Next we set E2 = [0, 20], β = 1% and H1 as the hypothesis that

q0 < 0.35. We see that if for example, the outcome is 20, then using our earlier theory of

estimatation, we can claim with 99% confidence (check this) that q0 < 0.35. If the outcome

is lower than 20, then the confidence in fact strengthens. Thus we have:

• H0 ≡ q0 = 0.4, E0 = [0, 29] ∪ [51, 100] and α = 5%.

• H1 ≡ q0 < 0.35, E1 = [0, 20] and β = 1%.

• However, if the outcome is in the set [30, 50], i.e., the complement to E0 ∪E1, then we

are forced to remain silent.

What do we do when o ∈ [30, 50]? Well we could conduct a fresh experiment with an

additional 900 trials to get a total of 1000 trials. We see that the set E0 in fact swings closer

to the the number 0.4n and the forbidden set, where we cannot draw any conclusion becomes

smaller. In fact, for n = 1000, the inconclusive set becomes [0.37n, 0.43n].
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13.2.2 Hypothesis Testing: More formally

Given a random sample (X1, X2, . . . Xn) for a random variableX, the function S : (X1, X2, . . . Xn)→
R is called statistic (or sample statistic). For instance, the sample mean

∑
Xi
n

and sample

variance
∑
i

(
Xi−

∑
Xi
n

)2
n−1

are statistics.

Let us consider hypotheses H0 and H1 defined by:

H0 : (X1, X2, . . . Xn) ∈ C

H1 : (X1, X2, . . . Xn) /∈ C

where, C is some tolerance limit also called the confidence region. The C is generally

defined in terms of some statistic S.

The following types of errors are defined as a consequence of the above hypotheses:

• Type I error: Probability of rejecting H0, if H0 was actually true.

This is given by: PrH0({X1, X2, . . . Xn} /∈ C)

• Type II error: Probability of accepting (or not-rejecting) H0, if H0 was actually false.

This is given by: PrH1({X1, X2, . . . Xn} ∈ C)

Given a significance level α ∈ [0, 1] (some bound on the Type I error10), we want to

determine a C such that,

PrH0({X1, . . . Xn} /∈ C) ≤ α Type I error

Here, C is the set of all possible “interesting” random samples. Also,

PrH0({X1, . . . Xn} /∈ C
′
) ≤ PrH0({X1, . . . Xn} /∈ C) ∀C ′ ⊇ C

Thus, we are interested in the “smallest” / “tightest” C. This is called the critical region

Cα. Consequently,

PrH0({X1, . . . Xn} /∈ Cα) = α

14 The abstract estimation problem

The abstract estimation problem is the following. LetX be a random variable with its density

function f(q;x), depending on a parameter from the set Q. We design an experiment with

10We can defer discussion of the Type II error, i.e. PrH1
({X1, . . . Xn} ∈ C).
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Figure 29: The matix M of Q vs. Outcomes

outcome set S. In our earlier case, Q = [0, 1] and S = {0, 1, . . . , n}. We construct a Q× S
matrix M where M(q, x) = f(q;x). We see that each row of the matrix M , i.e., when

q ∈ Q is fixed, is merely the density function. While, for a fixed outcome x ∈ S, we see

the dependence of the parameter on the oucome x. For our example, we see that for the

outcome k, the column function is a smooth function with variable q, while the row function

is the discrete probability Bin(q, n) with a discrete outcome set S.

For the problem of estimation, since the outcome of the experiment is known, it is the

column function which assumes importance. Thus, for Type II error analysis, the column

function must be understood. The Type I error analysis is about a particular hypothesis on

the parameter and thus it is the row function, i.e., the ordinary density function which must

be understood.

15 The mean of a normal distribution with known vari-

ance

Suppose next that X is a normal variable with an unknown mean but with a known variance

σ. The first question is of course, to ask where do such situations arise? These arise when an

additive intervention is made on a subset A of a normal population whose mean and variance

is known. It is expected that the mean of the members of A shifts to an unknown new mean.

Example 31 The government decides to impose an additional tax of Rs. 400 per tonne of

steel. Consequently, while some of the tax is absorbed by the industry, the remaining part is

passed on to the consumer. Given the price of steel in open market as a time series, estimate

the fraction which was passed on to the consumer.

This is possibly an example where the mean and the variance of the price data is a normal
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random variable. By observing this before the intervention, this old µ and σ may be accurately

estimated. The economic mechanism suggests that the tax will merely cause a shift in the

mean price from µ to µ+ δ without affecting σ.

Example 32 Karjat tribal block is a fairly homogenous sub-taluka of about 200 habitations

with child literacy fraction normally distributed with mean µ = 0.68 and σ = 0.14. Since

distances to school coould be an important factor, an intervention was designed to serve a

region of about 120 habitations by school rickshaws. The mechanism of literacy suggests that

the intervention will move σ without significantly changing σ.

Our task is to estimate µ of an unknown normal random variable X with known variance

σ2. We define our experiment as an n-way repeated trial with the outcome set X1 ×X2 ×
. . . × Xn. The parameter set Q = R is the set of possible µ values, i.e., the set of real

numbers. We define the estimator

e : X1 . . .×Xn → R

e(x1, . . . , xn) =
x1 + . . .+ xn

n

Note that this is merely the mean of the observations. We see that if each Xi were indeed

independent normal N(µ, σ) then the expectation E(e) would merely be n·µ
n

= µ. Thus the

estimator is unbiased, i.e., its expected value is indeed the correct value, if there is one.

We will next show that it is also a maximum likelihood estimator. To see this, the

probability of an n-observation sitting within [x1, x1 + δ]× . . .× [xn, xn + δ] is proportional

to f(x1) · . . . · f(xn), where f(x) = φ(µ, σ;x), the normal density function. We may write

this as:

Pr([x1, x1 + δ]× . . .× [xn, xn + δ]) = f(x1) · . . . · f(xn)δn

= ( 1
σ
√

2π
)ne

−
∑
i(xi−µ)

2

2σ2 δn

Now let us assume that σ and δ are fixed, and x1, . . . , xn are given observations, and that we

would like to determine the best possible µ which will maximize the RHS. Next, we see that

the RHS is maximized iff its log is maximized. But the log of the RHS as a function of µ, and

upto constants, is merely
∑

i−(xi − µ)2. Thus the RHS is maximized when
∑

i(xi − µ)2 is

minimized. This is easily seen by choosing µ =
∑
i xi
n

. This proves that e(x1, . . . , xn) =
∑
i xi
n

is indeed the maximum likelihood estimator.

Let us denote
∑
i xi
n

as x, i.e., the observation, while
∑
iXi
n

by X, the random variable.

We know that X is also normal with mean µ and variance σ2 = σ2/n. The decrease in the

variance of X is the key. We see right away that if µ were the unknown mean and x was the
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observation, then the abstract matrix M has

M(µ, x) =
1

σ
√

2π
e

(x−µ)2

2σ2

Thus, both the row and the column functions have the same behaviour, which makes things

much easier. We see that:

Pr(µ− 2σ ≤ x ≤ µ+ 2σ) ≥ 0.95

We may rearrange this (using our observation on M) to get:

Pr(x− 2σ ≤ µ ≤ x+ 2σ) ≥ 0.95

Example 33 Suppose that X is the random variable denoting the child literacy in a village

of Karjat tribal block. Suppose that it is known to be normal with an unknown mean but

a known σ = 0.14. Suppose a team visits 10 villages and finds x = 0.76. (i) What is the

assertion we can make with 99%, 95% and 90% confidence? (iii) Suppose we have prior

belief that the child literacy rate is around 0.5, how do we incorporate this prior information

(ii) Suppose that an expert asserts that µ = 0.68. With what confidence can you refute the

claim?

Let us solve (i) first. Firstly, we see that the effective standard deviation is only 0.14/
√

10 =

0.044. Next, We see that for a both-sided interval around 0.76, using cdfnor, we see that

the intervals as a multiple kσ, we have k(0.99) = 2.58, k(0.95) = 1.96 and k(0.9) = 1.65.

Thus, we see that these intervals are [0.65, 0.87], [0.67, 0.85] and [0.69, 0.83].

For (ii), we need to make use of Gaussian prior (which happens to be conjugate for mean

of a Gaussian) on µ such that the mean of the gaussian prior is 0.5. Refer to the handwritten

class notes for more details.

For (iii), we see that (0.76 − 0.68)/0.044 = 1.82. Again, using cdfnor, we see that the

event of x = 0.76, assuming that µ = 0.68 is in the (one-sided) 4% and lower. Thus, we

refute the claim with 96% confidence.

16 The variance of a normal distribution

Our next situation is to estimate the variance of a random variable which we know is normal.

This arises frequently in engineering, pollution, ethnography and so on. Before we go on, we

need to understand a new density function called the chi-squared density function which

70



Figure 30: The χ2
n density function for various n

has a parameter n and is denoted by χ2
n. This arises most commonly as the square of the

distance of a random point. Let X1, . . . , Xn be independent normal random variables with

mean 0 and variance 1, i.e., N(0, 1). Let Y = X2
1 + . . .+X2

n, then χ2
n is the density function

of Y . Clearly E(Y ) =
∑

iE(X2
i ) = n · 1 = n. See the plots below in Fig. 16 (use cdfchi

("PQ",x,n*ones(1,m))).

Again, we make n trials X1, . . . , Xn to obtain samples x1, . . . , xn and the sample mean

x = (
∑

i xi)/n. The estimator of the variance is S2 =
∑n
i=1(xi−x)2

n−1
. The curious term is

of course, the denominator. To understand this, let us look at a related summation as a

function on X1, . . . , Xn (where µ is the unknown mean).

∑
i(Xi − µ)2 =

∑
i((Xi −X) + (X − µ))2

=
∑

i(Xi −X)2 +
∑

i(X − µ)2 + 2
∑

i(Xi −X)(X − µ)

=
∑

i(Xi −X)2 +
∑

i(X − µ)2 + 2(X − µ)
∑

i(Xi −X)

=
∑

i(Xi −X)2 +
∑

i(X − µ)2

=
∑

i(Xi −X)2 + n · (X − µ)2

Taking expectations on both sides, we see that:

nσ2 = E(
∑
i

(Xi −X)2) + n · σ
2

n

Thus, we see that E(
∑

i(Xi − X)2) = (n − 1)σ2, and thus E(S2) = σ2. Thus, S2 is an

unbiased estimator.
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Lets start with the last equality:∑
i

(Xi − µ)2 =
∑
i

(Xi −X)2 + n · (X − µ)2

and divide everything by σ2 to obtain:

∑
i

(
Xi − µ
σ

)2

= (n− 1)
S2

σ2
+

(
X − µ
σ
√
n

)2

Since the LHS is a variable of density χ2
n and the second term of the RHS χ2

1, by a leap

of faith, the variable (n − 1)S
2

σ2 is distributed by the χ2
n−1 density function, i.e., a known

density function. Note that this does not need us to assume knowledge of µ at all. Let us

now apply this in an example.

Example 34 A sample of 10 fractional literacy levels in 10 villages was the sequence

[0.82, 0.73, 0.70, 0.69, 0.67, 0.56, 0.45, 0.44, 0.43, 0.43]

Give 90% and 99% confidence interval estimates for σ2. With what confidence will you refute

the claim that the SD is 0.1?

We see that S2 = 0.0217. The variance is 0.0195 and the sample SD is 0.140. Since

n = 10, we are dealing with χ2
9 with expected value 9. We will find intervals [a, b] around 9

such that Prχ2
9
([a, b]) = 1− α for α = 0.1 and 0.01. We use cdfchi("PQ",x,9*ones(1,m))

and get these intervals as [3.3, 18.9] and [1.8, 24]. Thus, we see that:

Pr(3.3 ≤ 9 · 0.0217
σ2 ≤ 18.9) = 0.9

Pr(2.727 ≥ σ2

0.0217
≥ 0.476) = 0.9

Pr(1.651 ≥ σ
0.147
≥ 0.69) = 0.9

Pr(0.242 ≥ σ ≥ 0.101) = 0.9

Thus, we can claim with 90% confidence that σ lies in the interval [0.101, 0.242]. A similar

(but larger) interval may be found for our 99% confidence assertion.

Next, we move to refuting the H0 ≡ σ = 0.1. We see that 9·0.0217
0.01

= 1.953. cdfchi("PQ",1.953,9)

gives the answer 0.0078, which is outside 1%. Thus, the observed S2 is outside the 1% chance

and thus we can claim with 99% confidence that σ = 0.1 is false.
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Figure 31: The t-density function

17 Normal with both mean and variance unknown

We now take up the common case that the only information we know about a data set that

it is normal, without knowing its mean of variance. Again, the experiment is a repeated

trial X1, . . . , Xn followed by a computation of the sample mean X and sample variance S2.

Suppose that the mean µ were known, and consider the function:

T =
(
√
n)X − µ√
S2)

The variable T is distributed by a classical distribution called the t-distribution of pa-

rameter n − 1. This marks the number of trials. Let us plot the t-density function along

with the normal N(0, 1). Note that each of the curves is symmetric about the origin, and

as expected bell-shaped. Also note that as n gets larger, the t-density function approaches

the normal distribution. This is because as n increases, the denominator S2 approaches the

variance σ2.

The problem here is to estimate µ or to test assertions on it. Again, we do this through

an example.

Example 35 A sample of 10 fractional literacy levels in 10 villages was the sequence

[0.82, 0.73, 0.70, 0.69, 0.67, 0.56, 0.45, 0.44, 0.43, 0.43]
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Give 90% and 99% confidence interval estimates for µ. With what confidence will you refute

the claim that µ is 0.55?

We see that the sample mean is 0.592 and S2 = 0.0217. Thus, we have the variable

T = 0.592−µ√
S2/10

= 0.592−µ
0.0466

. Next, we use cdft (with n− 1 = 9 degree of freedom) to compute the

intervals for 90% and 99%. This we get by using the command:

cdft("T",[9 9],[0.9 0.99],[0.1 0.01]) to get 1.383, 2.827. We start with the first prob-

lem, i.e., 90%. We have that:

Pr(−1.383 ≤ 0.592− µ
0.0466

≤ 1.383) ≥ 0.9

By rearranging, we see that:

Pr(0.527 ≤ µ ≤ 0.656) ≥ 90%

This gives us the confidence interval for the 90% as [0.527, 0.656]. Note that this interval is

larger than what would have been for the normal case with σ = 0.0466. The above interval

would correspond to a confidence of 91.66% in the normal case. This is because there is an

inherent uncertainly about the variance and that causes the t-density to be more broad than

the normal case.

Next, we see that 0.592−0.55
0.0466

= 0.901. The p-value for this can be found by

cdft("PQ",-0.901,9) which is 0.196. Thus, we can reject the claim with a mere 1 − 2 ∗
0.196 = 0.609, i.e., 60.9%.
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18 A few scilab commands and code

Scilab code associated with each and every chapter of the primary textbook (Sheldon M.

Ross) can be found at http://www.cse.iitb.ac.in/~IC102/code/scilab_code.zip. A

local copy of the scilab code description can be found here http://www.cse.iitb.ac.in/

~IC102/code/scilab_code_description.pdf. The code has been reformated and reorga-

nized chapterwise for compatibility with Aakash tablets in both tar.gz and zip formats at

http://www.cse.iitb.ac.in/~IC102/code/aakash_code.

In what follows, we only briefly describe

• some functionalities in scilab and some additional functionalities that we have shared

for reading and processing data from xls files and

• some of the basic functionalities in scilab. Somewhat detailed introductory notes on

scilab can be downloaded from http://www.cse.iitb.ac.in/~IC102/code/Scilabnotes.

pdf.

For any detailed information on performing operations based on probability and statistics

on datasets, you need to refer to the scilab code repository (and its documentation) pointed

to above.

Reading a .xls file: In the beginning there is an .xls file. To input it into your scilab

session, you need to use the readxls command, such as:

murbad=readxls("thane murbad census I.xls")

This creates a copy of the .xls file in your session and the file is called murbad. These will

have as many sheets as your original file had and these are refered as murbad(1), murbad(2)

and so on. So lets do the following.

mu=murbad(1) // this picks out the first sheet

size(mu) // should output 211. 64.

mu.value // will list out the numeric part of the sheet

// and put a NaN (not a number) where it sees text

mu.text // does it for the non-numeric data

We see that columns 56, and 10 onwards are numeric, while the others are text. Now,

let us select all the rows which correspond to VILLAGE (column 7) and all the numeric

columns. This is done as follows:

I=[]; for i=1:211 if mu(i,7)=="VILLAGE" I=[I i]; end; end;

murbadnumeric=mu(I,[10:64]);
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size(murbadnumeric) // should give you 205. 55.

save murbadnumeric // now a load will get this back for us

Now, we load all the index names. This is done by exec "index.sci". What this will do

is to define variables such as TOT P and NON WORK M and put the correct column index

for them, which are 11 and 63 respectively. Remember that while creating murbadvillage we

have deleted the first 9 columns and hence murbadvillage(:,TOT P-9) will be the column

vector of the total populations of all villages in Murbad. Just for fun, we extract the

population fraction under 6 as follows:

for i=1:205 y(i)=murbadnumeric(i,P_06-9)/murbadnumeric(i,TOT_P-9); end;

Next, let us list a few scilab functions.

• mean(X) returns the mean of the entries of the matrix X. Example mean([1 2; 3 4])

returns 2.5.

• nanstdev(X) returns the standard deviation of the argument X.

• variance(X,1), variance(X,1,1), variance(X,2): This computes the variance of

the matrix X. If the second arument is 2 then it computes the variance of each

row, while if it is 1 (default), then it does it for each column. The normalization

is either (default) m − 1 (where m is the appropriate dimension) of m. The op-

tion of m, which you would normally require, is obtained by adding a third argu-

ment 1. Example: variance([1 2 3],1), variance([1 2 3],1,1), variance([1

2 3],2), variance([1 2 3],2,1) returns error, [0, 0, 0], 1 and 0.66 respectively.

• covar(X,Y,eye(n,n)) returns the covariance of the two (row or column) vectors X

and Y of equal length. Here n is the size of X (or Y ). Example covar([1 2 1],[2

2 3],eye(3,3)) returns −0.111. Instead of eye(3, 3) you could feed in the frequency

matrix f , where f(i, j) would be the number of times that you have observed the tuple

(xi, yj).

• correl(X,Y,eye(n,n)) returns the correllation of the two (row or column) vectors X

and Y of equal length. Here n is the size of X (or Y ). Example correl([1 2 1],[2

2 3],eye(3,3)) returns −0.5. As above, instead of eye(3, 3) you could feed in the

frequency matrix f , where f(i, j) would be the number of times that you have observed

the tuple (xi, yj).
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• histplot(M,X): plots a histogram of the entries in X. M is either an integer or a

row-vector of values M = [m1,m2, . . . ,mk]. If M is an integer, the produced figure

has M divisions. If M is a vector, then the plots are for frequencies in [mi−1,mi].

he Y -axis is normally fraction of entries. Use histplot(M,X,normalization=%f) for

frequencies.

• plot2d(x,y): x and y should be vectors of the same size. This will plot a poly-line

connecting (xi, yi) to xi+1, yi+1) for each i. plot2d(x,y,’r+’) will not draw the line,

but only the points. These will be marked red and with a ”+” sign.

• title("my title") will add a title to your graph. legend("my legend"), xlabel("mylabel"),

ylabel("mylabel") will add the labels and legends to your plot.

• grand(m,n,"type",param-list): is the basic random number generator.

– grand(m,n,"bin",N,q): generates an m × n matrix of numbers in [0, N ] with

the binomial density function.

– grand(m,n,"nor",mu,sig): generates an m× n matrix of reals drawn from the

normal density function with mean mu and SD sig.

– grand(m,n,"unf",Low,High): generates an m × n matrix of reals drawn from

the uniform denisty function for the interval [Low,High].

• X=binomial(q,n) produces a vector X of size n+ 1, where X(k+ 1) is the probability

that the outcome of the binomial density function Binom(q,n) is k. In other words,

X(k + 1) =
(
n
k

)
qk(1− q)n−k.

• XX=cdfnor("PQ ",X,µ,σ). The matrices X,µ, σ must be of the same dimensions and

so will the output be.

XX(i, j) =

∫ X(i,j)

−∞
φ(µ(i, j), σ(i, j);x)dx

where φ is the gaussian function. Thus cdfnor implements the cumulative density

function.

Example 36 Drawing histograms for actual and predicted frequencies Consider

the case when we have an array of values HH, which has, say, the number of households of

all the villages in Shahpur taluka. Let us draw a histogram for this number and compare it

with the ideal normal for the same mean and variance as the data HH.

Here is a sample code fragment., with the output indicated after the % sign:
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Figure 32: The households in Shahpur

mu=mean(HH) // 201

variance(HH,1) // 34484

max(HH) // 1635

sig=sqrt(varr) // 186

xx=linspace(0,1700,86) // this creates an array of 86 equally spaced point from

//0 to 1700, i.e., 20 apart

histplot(xx,HH,normalization=%f) // creates the histogram below

// now we set about creating the expected normal frequencies

size(HH) // is 222

cdf=cdfnor("PQ",xx,mu*ones(1,86),sig*ones(1,86));

// this produces the vector in cdf for all the stopping points

// of the histogram

pdf=differ(cdf)*222 // this is what we want

// differ is our function to compute input(i+1)-input(i)

//

$\chi^2_n $ density function for various $n$}

plot(xx,pdf) // does the job by plotting the normal on the histogram

// the first flick to 30 corresponds to the number which

// should have been there less than zero
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19 Appendix on Regression

Suppose there are two sets of variables x ∈ <n and y ∈ <k such that x is independent

and y is dependant. The regression problem is concerned with determining y in terms of x.

Let us assume that we are given m data points D = 〈x1,y1〉, 〈x2,y2〉, .., 〈xm,ym〉. Then the

problem is to determine a function f ∗ such that f ∗(x) is the best predictor for y, with respect

to D. Suppose ε(f,D) is an error function, designed to reflect the discrepancy between the

predicted value f(x′) of y′ and the actual value y′ for any 〈x′,y′〉 ∈ D, then

f ∗ = arg min
f∈F

ε(f,D) (3)

where, F denotes the class of functions over which the optimization is performed.

19.1 Multivariate Nonlinear Example: Curve Fitting

Learn f : X → Y such that E(f,X, Y1) is minimized. Here the error function E and form

of the function to learn f is chosen by the modeler.

Consider one such form of f ,

f(x) = w0 + w1x+ w2x
2 + ...+ wtx

t

The sum of squares error is given by,

E =
1

2

m∑
i=1

(f(xi)− yi)2

So the expression is,

arg min
w=[w1,w2,...wt]

1

2

K∑
i=1

[(w0 + w1x+ w2x
2 + ...+ wtx

t)− y1(i)]2

If there are m data points, then a polynomial of degree m − 1 can exactly fit the data,

since the polynomial has m degrees of freedom (where degrees of freedom=no. of coefficients)

As the degree of the polynomial increases beyond m, the curve becomes more and more

wobbly, while still passing through the points. Contrast the degree 10 fit in Figure 34 against

the degree 5 fit in Figure 33. This is due to the problem of overfitting (overspecification)

Now E is a convex function. To optimize it, we need to set ∇wE = 0. The ∇ operator

is also called gradient.

Solution is given by,
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Figure 33: Fit for degree 5 polynomial.

X = (φtφ)−1φtY

If m << t then

• φ becomes singular and the solution cannot be found OR

• The column vectors in φ become nearly linearly dependent

RMS (root mean sqare) error is given by :

RMS =

√
2E

k

Generally, some test data (which potentially could have been part of the training data)

is held out for evaluating the generalized performance of the model. Another held out

fraction of the training data, called the validation dataset is typically used to find the most

appropriate degree tbest for f .

19.2 Linear regression and method of least squares error

Depending on the function class we consider, there are many types of regression problems.

In Linear regression we consider only linear functions, functions that are linear in the basis

function. Here F is of the form {
∑p

i=1wiφi(x)}. φi : Rn → Rk Here, the φi’s are called the

basis functions (for example, we can consider φi(x) = xi, i.e., polynomial basis functions)

.
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Figure 34: Fit for degree 10 polynomial. Note how wobbly this fit is.

Any function in F is characterized by its parameters, the wi’s. Thus, in (3) we have to

find f(w∗) where

w∗ = arg min
w

ε(w,D)

Least square solution

The error function ε plays a major role in the accuracy and tractability of the optimization

problem. The error function is also called the loss function. The squared loss is a commonly

used loss function. It is the sum of squares of the differences between the actual value and

the predicted value.

ε(f,D) =
∑

〈xi,yi〉∈D

(f(xi)− yi)2

So the least square solution for linear regression is given by

w∗ = arg min
w

m∑
j=1

( p∑
i=1

(wiφi(xj)− yj
)2

The minimum value of the squared loss is zero. Is it possible to achieve this value ? In

other words is ∀j,
p∑
i=1

wiφi(xj) = yj possible ?

The above equality can be written as ∀u, φT (xu)w = yu

or equivalently φw = y where
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C(φ)

ŷ

y

Figure 35: Least square solution ŷ is the orthogonal projection of y onto column space of φ

φ =


φ1(x1) · · · φp(x1)

...
...

...

φ1(xm) · · · φp(xm)

 and y =


y1

...

ym


It has a solution if y is in the column space (the subspace of Rn formed by the column

vectors) of φ. It is possible that there exists no w which satisfies the conditions? In such

situations we can solve the least square problem.

Geometrical interpretation of least squares

Let ŷ be a solution in the column space of φ. The least squares solution is such that the

distance between ŷ and y is minimized. From the diagram it is clear that for the distance

to be minimized, the line joining ŷ to y should be orthogonal to the column space. This can

be summarized as

1. φw = ŷ

2. ∀v ∈ {1, ..p}, (y − ŷ)Tφv = 0 or (ŷ − y)Tφ = 0

ŷTφ = yTφ

ie, (φw)Tφ = yTφ

ie, wTφTφ = yTφ

ie, φTφw = φTy

∴ w = (φTφ)−1y

In the last step, please note that, φTφ is invertible only if φ has full column rank.
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Theorem: If φ has full column rank, φTφ is invertible. A matrix is said to have full column

rank if all its column vectors are linearly independent. A set of vectors vi is said to be

linearly independent if
∑

i αivi = 0⇒ αi = 0.

Proof: Given that φ has full column rank and hence columns are linearly independent, we

have that φx = 0⇒ x = 0.

Assume on the contrary that φTφ is non invertible. Then ∃x 6= 0 3 φTφx = 0.

⇒ xTφTφx = 0

⇒ (φx)Tφx = ||φx||2 = 0

⇒ φx = 0. This is a contradiction. Hence the theorem is proved.

19.3 Regularised solution to regression

We previously derived solution for the regression problem formulated as a solution to the

least-squares objective, that is, by minimizing the rms error over observed data points. We

also analysed conditions under which the obtained solution was guaranteed to be a global

minima. However, as we observed, increasing the order of the model yielded larger rms error

over test data, which was due to large fluctuations in the model learnt and consequently

due to very high values of model coefficients (weights). In this lecture, we discuss how

the optimization problem can be modified to counter very large magnitudes of coefficients.

Subsequently, solution to this problem is provided through lagrange dual formulation followed

by discussion over obtained solution and impact over test data.

Problem formulation

In order to discourage coefficients from becoming too large in magnitude, we may modify

the problem and pose a constrained optimization problem. Intuitively, for achieving this

criterion, we may impose constraints on the magnitude of the coefficients. Any norm for this

purpose might provide a good working solution. However, for mathematical convenience,

we start with the euclidean (L2) norm. The overall problem with objective function and

constraint goes as follows:

minimize
w

(Φw − Y )T (Φw − Y )

such that ||w||22 ≤ ξ
(4)
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As observed in last lecture, the objective function, namely f (w) = (Φw−Y )T (Φw−Y ) is

strictly convex. Further to this, the constraint function, g(w) =‖ w ‖2
2 −ξ, is also a convex

function. For convex g(w), the set S = {w|g(w) ≤ 0}, can be proved to be a convex set by

taking two elements w1 ∈ S and w2 ∈ S such that g(w1) ≤ 0 and g(w2) ≤ 0. Since g(w) is

a convex function, we have the following inequality:

g(θw1 + (1− θ)w2) ≤ θg(w1) + (1− θ)g(w2)

≤ 0;∀θ ∈ [0, 1], w1, w2 ∈ S
(5)

As g(θw1 +(1−θ)w2) ≤ 0; ∀θ ∈ S, ∀w1, w2 ∈ S, θw1 +(1−θ)w2 ∈ S, which is both sufficient

and necessary for S to be a convex set. Hence, function g(w) imposes a convex constraint

over the solution space.

Bound on λ in the regularized least square solution

As discussed earlier, we need to minimize the error function subject to constraint ‖w‖≤ ξ.

Applying the first order necessary conditions of minimality to this problem, if w∗ is a global

optimum then from the first first order necessary conditions for minimality, we get,

∇w∗(f(w) + λg(w)) = 0 (6)

where, f (w) = (Φw − Y )T (Φw − Y ) and g(w) = ‖w‖2 − ξ
Solving we get,

2(ΦTΦ)w∗ − 2ΦT − 2λw∗ = 0

i.e.

w∗ = (ΦTΦ + λI)−1ΦTy (7)

We will also obtain the following conditions from the Karush Kuhn Tucker necessary opti-

mality conditions;

‖w∗‖2 ≤ ξ (8)

and

λ ≥ 0 (9)
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and

λ‖w∗‖2 = λξ (10)

Thus values of w∗ and λ which satisfy all these equations would yield an optimal solution.

Consider equation (7),

w∗ = (ΦTΦ + λI)−1ΦTy

Premultiplying with (ΦTΦ + λI) on both sides we have,

(ΦTΦ + λI)w∗ = ΦTy

∴ (ΦTΦ)w∗ + (λI)w∗ = ΦTy

∴ ‖(ΦTΦ)w∗ + (λI)w∗‖ = ‖ΦTy‖

By triangle inequality,

‖(ΦTΦ)w∗‖+ (λ)‖w∗‖ ≥ ‖(ΦTΦ)w∗ + (λI)w∗‖ = ‖ΦTy‖ (11)

Now , (ΦTΦ) is a nxn matrix which can be determined as Φ is known .

‖(ΦTΦ)w∗‖ ≤ α‖w∗‖ for some α for finite |(ΦTΦ)w∗‖. Substituting in the previous equation,

(α + λ)‖w∗‖ ≥ ‖ΦTy‖

i.e.

λ ≥ ‖Φ
Ty‖
‖w∗‖

− α (12)

Note that when ‖w∗‖ → 0, λ→∞. This is obvious as higher values of λ would focus more

on reducing values of ‖w∗‖ than on minimizing the error function.

‖w∗‖2 ≤ ξ

Eliminating ‖w∗‖ from the equation (14) we get,

∴ λ ≥ ‖Φ
Ty‖√
ξ
− α (13)
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This is not the exact solution of λ but the bound (15) proves the existance of λ for some ξ

and Φ.

RMS Error variation

Figure 36: RMS error vs. degree of polynomial for test and train data

Recall the polynomial curve fitting problem we considered in earlier lectures. Figure 36

shows RMS error variation as the degree of polynomial (assumed to fit the points) is in-

creased. We observe that as the degree of polynomial is increased till 5 both train and test

errors decrease. For degree > 7, test error shoots up. This is attributed to the overfitting

problem (The datasize for train set is 8 points.)

In Figure 37, the variation in the RMS error with variations in the Lagrange multiplier λ

has been explored (keeping the polynomial degree constant at 6). Given this analysis, what

is the optimum value of λ that must be chosen? We have to choose that value for which the

test error is minimum (Identified as the point of optimum in the figure.).

Alternative objective function

Consider equation (6). If we substitute g(w) = ‖w‖2 − ξ, we get

∇w∗(f(w) + λ · (‖w‖2 − ξ)) = 0 (14)
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Figure 37: RMS error vs. 10λfor test and train data (at Polynomial degree = 6)

This is equivalent to finding

min(‖ Φw − y ‖2 +λ ‖ w ‖2) (15)

For the same λ, these two solutions are the same. This form or regression is known as Ridge

regression. If we employ the L1 norm it is called ’Lasso’. Note that the w∗ form that we

derived is valid only for the L2 norm.

20 Appendix on Gaussian and Uniform Distributions

20.1 Information Theory

Let us denote I(X=x) as the measure of information conveyed in knowing value of X=x.

Question: Consider the two graphs above. Say you know probability function p(x). When

is knowing value of X more useful (that is, carries more information)?

Ans: It is more useful in the case(2), because more information is conveyed in Figure 38

than in Figure 39.
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Figure 38: Figure showing curve where Information is not distributed all along.

Figure 39: Figure showing curve where Information is distributed.

Expectation for I(X=x):

• If X and Y are independant random variables from the same distribution.

I(X = x, Y = x) = I(X = x) + I(Y = y) (16)

One way of expressing the above is:

I(x, y) = I(x) + I(y) (17)

where P(x),P(y) are the probability functions respectively.

• If p(x)>P (y) , then

I(x)<I(y)

There is only one function which satisfies the above two properties.

I(p(x)) = −c log(p(x)) (18)
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• The Entropy in the case of discrete random variable can be defined as:

EP [I(p(x))] =
∑
x

−c log[p(x)] (19)

• In the case of continuous random variable it is,

EP [I(p(x))] =

∫
x

−c log[p(x)] (20)

The constant ’C’ in the above two equations is traditionally 1.

Observations:

• For a discrete random variable (with countable domain), the information is maximum

for the uniform distribution.

• For Continuous random variable ( with finite mean and finite variance), the information

is maximum for the Gaussian Distribution.

Finding argmax
p

Ep in an infinite domain, subject to

∫
xp(x)dx = µ

and ∫
(x− µ)2p(x)dx = σ2

The solution would be

p(x) = e
−(x−µ)2

2σ2

σ
√

2π

Properties of gaussian univariate distribution

• If X ∼ N(µ, σ2)

p(x) = 1
σ
√

2π
e
−(x−µ)2

2σ2 where−∞ < x <∞

then w1X + w0 ∼ N(w1µ+ w0, w
2
1σ

2)

(can prove this using moment generating function)
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Φ(N(µ, σ2)) = EN(µ,σ2)[e
tx] = eµt+

(σt)2

2

Recall

E(X) = dφ(p)
dt

var(x) = d2φ(p)
dt2

EN(µ,σ2)[e
t(w1x+w0)] = (w1µt+ w0t+ (σt)2

2
× w2

1) ∼ N(w1µ+ w0, w
2
1σ

2)

• Sum of i.i.d X1, X2, ......, Xn ∼ N(µ, σ2) is also normal (gaussian)

X1 +X2 + ......+Xn ∼ N(nµ, nσ2)

In genaral if Xi ∼ N(µi, σ
2
i ) =⇒

∑n
i=1 Xi ∼ N(

∑
µi,
∑
σ2
i )

• Corollary from (1) If X ∼ N(µ, σ2)

z = X−µ
σ
∼ N(0, 1) (Useful in setting interval estimate)

(take w1 = 1
σ
and w0 = µ

σ
)

Note:- If X1, X2, ....Xm ∼ N(0, 1)

1. y =
∑

iX
2
i ∼ χ2

m. That is, y follows the chi-square distribution with m-degrees

of freedom.

2. y = z∑
X2
i

∼ tn. (where z ∼ N (0, 1))). That is, y follows the students-t

distribution.
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Figure 20.1 : Figure showing the nature of the (chi− square) distribution with 5

degrees of freedom

• Maximum Likelihood estimate for µ and σ2

Given X1, X2, ....Xm..... Random Sample.

µ̂MLE = argmaxµ
∏m

i=1[ 1
σ
√

2π
e
−(Xi−µ)

2

2σ2 ]

= argmaxµ
1

σ
√

2π
e
−

∑
(Xi−µ)

2

2σ2

µ̂MLE =
∑m
i=1Xi
m

= sample mean

• With out relaying on central limit theorem Properties (2) and (1)

i.e. Sum of i.i.d’s X1, X2, ......, Xn ∼ N(µ, σ2)

µ̂MLE = N(µ, σ
2

m
)

Similarly

σ̂2
MLE =

∑m
i=1(Xi−µ̂MLE)2

m
is χ2 distrbution

∼ χ2
m
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• Coming up with conjugate prior of N(µ, σ2)

Case (1) σ2 is fixed and prior on µ

⇒ µ ∼ N(µ0, σ
2
0)

Case (2) µ is fixed and σ2 has prior

⇒ σ2 ∼ Γ

case (3) if µ and σ2 both having the prior

⇒ (µ, σ2) ∼ Normal gamma distribution ∼ Students-t distribution
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