
Chapter 3

Linear Algebra

Dixit algorizmi . Or, “So said al-Khwarizmi”, being the opening
words of a 12th century Latin translation of a work on arithmetic by
al-Khwarizmi (ca. 780–840).

3.1 Linear Equations

Elementary algebra, using the rules of completion and balancing developed by
al-Khwarizmi, allows us to determine the value of an unknown variable x that
satisfies an equation like the one below:

10x − 5 = 15 + 5x

An equation like this that only involves an unknown (like x) and not its
higher powers (x2, x3), along with additions (or subtractions) of the unknown
multiplied by numbers (like 10x and 5x) is called a linear equation. We now
know, of course, that the equation above can be converted to a special form
(“number multiplied by unknown equals number”, or ax = b, where a and b are
numbers):

5x = 20

Once in this form, it becomes easy to see that x = b/a = 4. Linear algebra
is, in essence, concerned with the solution of several linear equations in several
unknowns. Here is a simple example of two equations and two unknowns x and
y, written in a uniform way, with all unknowns (variables) to the left of the
equality, and all numbers (constants) to the right:
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Figure 3.1: Solving linear equations: the geometric view.

2x − y = 0

−x + 2y = 3

We woud like to find values of x and y for which these equations are true.
School geometry tells us how to visualise this: each equation is a straight line in
the xy plane, and since we want a value of x and y for which both equations are
true, we are really asking for the values of x and y that lie on both lines (that is,
the point of intersection of the two lines: see Fig. 3.1). Of course, if the lines do
not meet at a point, then there are no values of x and y that satisfy the equations.
And we can continue to solve problems like these geometrically: more unknowns
means lines become higher-dimensional flat surfaces (“hyperplanes”), and more
equations means we are looking for the single point of intersection of all these
surfaces. Visually though, this is challenging for all but a small minority of us,
geared as we are to live in a world of three spatial dimensions.
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Linear algebra, an extension of elementary algebra, gives us a way of looking
at the solution of any number of linear equations, with any number of variables
without suffering from this visual overload. In effect, equations are once again
converted to the simple form we just saw, that is, Ax = b, although A and b are
no longer just numbers. In fact, we will see that A is a matrix , and that x and
b are vectors (and in order not to confuse them with variables and numbers, we
will from now on use the bold-face notation x and b). Linear algebra, shows us
that solutions, if they exist, can be obtained in three different ways:

1. A direct solution, using techniques called elimination and back substitu-
tion.

2. A solution by “inverting” the matrix A, to give the solution x = A−1b.

3. A vector space solution, by looking at notions called the column space and
nullspace of A.

Understanding each of these requires a minimal understanding of vectors and
matrices, which we give in a somewhat compressed form here.

3.2 Vectors and Matrices

It is easiest to think of a vector as a generalisation of a single number. A
pair of numbers can be represented by a two-dimensional vector . Here is the
two-dimensional vector representation of the pair (2,−1):

u =

[

2

−1

]

This kind of vector is usually called a “column” vector. Geometrically, such a
vector is often visualised by an arrow in the two-dimensional plane as shown
on the left in Fig. ??. Multiplying such a vector by any particular number, say
2, multiplies each component by that number. That is, 2u represents the pair
(4,−2). Geometrically, we can see that multiplication by a number—sometimes
called scalar multiplication—simply makes gives a vector with a “longer” arrow
as shown on the right in the figure (assuming, of course, that we are not dealing
with zero-length vectors). In general, multiplication of a (non-zero) vector u

by different (non-zero) numbers a result in lines either in the direction of u (if
a > 0) or in the opposite direction
Suppose we now consider a second vector v corresponding to the pair (−1, 2),
and ask: what is u + v. This simply adds the individual components. In our
example:

u =

[

2

−1

]

v =

[

−1

2

]

u + v =

[

2 − 1

−1 + 2

]

=

[

1

1

]
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Geometrically, the addition of two vectors gives a third, which can visualised as
the diagonal of the parallelogram formed by u and v (Fig. ??, left). It should be
straightforward to visualise that any point on the plane containing the vectors u

and v can be obtained by some linear combination au + bv, and that the space
of all linear combinations is simply the full two-dimensional plane containing u

and v (Fig. ??, right). For the two-dimensional example here, this plane is just
the usual xy plane (we will see that this is the vector space ℜ2).
Although we have so far only looked at vectors with two components, linear
algebra is more general. It allows us to use the same operations with vectors of
any size. Suppose our vectors u and v are three-dimensional. Linear combina-
tions now still fill a plane containing the two vectors. But, this is no longer the
xy plane, since the vectors generated by the linear combinations are points in
three-dimensional space (we will see later, that is some “subspace” of the vector
space ℜ3). Addition of a third vector w will also not necessarily result in a
point on this plane, and the space of linear combinations au + bv + cw could
fill the entire three-dimensional space.

Let us return now to the two equations that we saw in the previous section:

2x − y = 0

−x + 2y = 3

It should be easy to see how these can be written in “vector” form:

x

[

2

−1

]

+ y

[

−1

2

]

=

[

0

3

]

(3.1)

That is, we are asking if there is some linear combination of the column vectors
[2,−1] and [−1, 2] that gives the column vector [0, 3]. And this is the point of
departure with the usual geometric approach: we visualise solutions of equations
not as points of intersections of surfaces, but as linear combination of vectors
(of whatever dimension): see Fig. 3.2.

To get it into a form that is even more manageable, we need the concept of
a “coefficient matrix”. A matrix is simply a rectangular array of numbers, and
the coefficient matrix for the left hand side of the linear combination above is:

A =

[

2 −1

−1 2

]

This is a 2 × 2 (“two by two”) matrix, meaning it has 2 rows and 2 columns.
You can see that the columns of the matrix are simply the column vectors of
the linear combination. Let:
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Figure 3.2: Solving linear equations: the geometric view from linear algebra.
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x =

[

x

y

]

and b =

[

0

3

]

Then, the matrix equation representing the same linear combination is:

Ax = b (3.2)

This, as you can see, is just as simple, at least in form. as the very first equation
we started with (5x = 20). We still need to know what Ax means. Comparing
Equations 3.2 and 3.2, Ax = x (column 1 of A) + y (column 2 of A).

This extends easily enough to equations with more variables. Here are three
linear equations in three unknowns:

2x − y = 0

−x + 2y − z = −1

−3y + 4z = 4

The coefficient matrix A is:

A =






2 −1 0

−1 2 −1

0 −3 4






The right hand side of the matrix equation is:

b =






0

−1

4






What we are trying to do is to find values of x, y and z such that:

x(column 1 of A) + y(column 2 of A) + z(column 3 of A) =






0

−1

4





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It is easy to see now that the solution we are after is x = 0, y = 0, z = 1. Or, in
vector form, the solution to the matrix equation Ax = b is:

x =






0

0

1






In general, things are not so obvious and it may be the case that for some
values of A and b, no values of x, y and z would solve Ax = b. For example,
b may be a point in 3-dimensional space that could not be “reached” by any
linear combinations of the vectors comprising the columns of A. Here is a simple
example:

A =






1 0 1

0 1 1

0 0 0




 b =






0

0

1






Seqences of mathematical operations—algorithms, if you will—have been
devised to check if solutions exist, and obtain these solutions mechanically when
they exist. There are three such approaches we will look at: obtaining solutions
by elimination (the simplest), obtaining solutions by matrix inversion (a bit
more complex), and finally, a vector space solution (the hardest). We look at
each of these in turn.

3.3 Solution of Linear Equations by Elimination

We will now examine a systematic method as “elimination”—first presented by
Gauss, for solving a linear system of equations. The basic idea is to progressively
eliminate variables from equations. For example, let us look once again at the
two equations we saw earlier:

2x − y = 0

−x + 2y = 3

Elimination first multiplies both sides of the second equation by 2 (this clearly
leaves it unchanged):

−2x + 4y = 6

We can also add equal amounts to the left and right sides without changing the
equation. So, adding the left hand side of the first equation to the left hand
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side of this new equation, and the right hand side of the first equation to the
right hand side of this new equation also does not alter anything:

(−2x + 4y) + (2x − y) = 6 + 0 or 3y = 6

So, the two original equations are the same as:

2x − y = 0

3y = 6

You can see that x has been “eliminated” from the second equation and the set
of equations have been said to be transformed into an upper triangular form.
In this form, it is easy to see that y = 6/3 = 2. The value of x can then
be obtained by substituting back this value for y in the first equation, to give
2x − 2 = 0 or x = 1. The different steps in the elimination process can be
expressed clearly using matrices, which we do now. As a running example, we
will use the following set of 3 equations:

x + 2y + z = 2

3x + 8y + z = 12

4y + z = 2

We now know what the coefficient matrix for these equations is:

A =






1 2 1

3 8 1

0 4 1






A point of notation. The entry in row 1, column 1 of A will be denoted a11; row
1, column 2 will be a12 and so on. So, in the matrix above, a11 = 1, a12 = 2
etc.. In general, the entry in row i, column j will be denoted aij .

Before we plunge into the details of the matrix operations, let us just go
through the procedure mechanically (taking on faith for the moment that the
steps are indeed valid ones). Our first elimination step is to eliminate x from the
second equation. We multiply the first equation by a multiplier and subtract it
from the second equation with the goal of eliminating the x coefficient in the
second equation. We will call it the (2, 1) step. The first element of the first
row a11 determines the value of the multiplier (3 in this case) and it is called a
pivot. For reasons that will become clear, pivots should not be 0. The resultant
coefficient matrix is:
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A1 =






1 2 1

0 2 −2

0 4 1






The next step will be to get a 0 in the first column of the third row (a31) of A1.
Since this is already the case, we do not really need to do anything. But, just
to be pedantic, let us take it as giving a coefficient matrix A2, which is just the
same as A1:

A2 =






1 2 1

0 2 −2

0 4 1






We now move on to eliminating a32 in A2. Using a22 in A2 as the next pivot,
we subtract from the third row a multiple (2) of the second row. The resultant
coefficient matrix is now:

A3 =






1 2 1

0 2 −2

0 0 5






A3 is called an upper triangular matrix for obvious reasons (and sometimes
denoted by U). We will see shortly that with the sequence of operations that
we have just done, the left hand side of the original matrix equation Ax is
transformed into A3x by progressively multiplying by a sequence of matrices
called “elimination matrices”.

3.3.1 Elimination as Matrix Multiplication

Let us go back to the original matrix equation:






1 2 1

3 8 1

0 4 1











x

y

z




 =






2

12

2






We take a step back and look again at the first elimination step (“multiply
equation 1 by 3 and subtract from equation 2”). The effect of this step is to
change the right-hand side second equation from 12 to 12− 3× 2 = 6 and leave
the right-hand sides of all other equations unchanged. In matrix notation, the
right hand side, after the first elimination step, is:
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b1 =






2

6

2






A little calculation should be sufficient to convince yourself that b1 can be
obtained by pre-multiplying b by the matrix:

E =






1 0 0

−3 1 0

0 0 1






That is, b1 = Eb. You can check this by doing the usual linear combination of
the columns of E with the components of b, but the following “row-by-column”
view—which is simply the linear combination expanded out—may be even more
helpful:






a11 a12 a13

a21 a22 a23

a31 a32 a33











b1

b2

b3




 =






a11b1 + a12b2 + a13b3

a21b1 + a22b2 + a23b3

a31b1 + a32b2 + a33b3






So, if the elimination step multiplies the left-hand side of of the matrix equation
Ax = b by the matrix E, then to make sure nothing is changed, we have to do
the same to the left-hand side. That is, the elimination step changes the left-
hand side to EAx. But now we are stuck—EA is a product of two matrices,
which we have not come across before. What does this mean?

Well, we know what we would like EA to mean. We would like EA = A1.
That is:






1 0 0

−3 1 0

0 0 1











1 2 1

3 8 1

0 4 1




 =






1 2 1

0 2 −2

0 4 1




 (3.3)

Taking a vector as simply being a matrix with a single column, we would like to
extend the old matrix-vector multiplication (Ax) idea to general matrix-matrix
multiplication. Suppose B is a matrix comprised of the column vectors b1, b2

and b3. Then AB is a matrix that has columns Ab1, Ab2, and Ab3. So, in the
example above, EA is a matrix that has columns Ea1, Ea2 and Ea3 (where a1,
a2 and a3 are the columns of A). Let us work out what these are:
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Ea1 =






1 0 0

−3 1 0

0 0 1











1

3

0




 =






1 × 1 + 0 × 3 + 0 × 0

−3 × 1 + 1 × 3 + 0 × 0

0 × 1 + 0 × 3 + 1 × 0




 =






1

0

0






This is the first column of the matrix A1 on the right-hand side of Equation
3.3.1. You can check that Ea2 and Ea3 do indeed give the other two columns
of A1. Once again, there is a “row-by-column” view of multiplying two matrices
that you will often find helpful:






a11 a12 a13

a21 a22 a23

a31 a32 a33











b11 b12 b13

b21 b22 b23

b31 b32 b33




 =







a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33

a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33

a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33







At this point, it is important that you are aware of some properties of matrix
multiplication. First, multiplying matrices A and B is only meaningful if the
number of columns of A is the same as the number of rows of B. If A is an
m× n matrix, and B is an n× k matrix, then AB is an m× k matrix. Second,
just like with ordinary numbers, matrix multiplication is “associative”; that is,
(AB)C = A(BC) (with numbers, (3×4)×5 = 3× (4×5). But, unlike ordinary
numbers, matrix multiplication is not “commutative”. That is AB 6= BA (but
with numbers, 3 × 4 = 4 × 3).

It is the associativity of matrix multiplication that allows us to build up
a sequence of matrix operations representing elimination. Let us return once
again to the matrix equation we started with:






1 2 1

3 8 1

0 4 1











x

y

z




 =






2

12

2






We have seen, how, by multiplying both sides by the elimination matrix E
(which we will now call E21, for reasons that will be obvious), gives:

E21(Ax) = (E21A)x = E21b

or:

A1x = E21b
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where A1 = E21A. Without more elaboration, we now simply present the elim-
ination matrices E31 and E32 that correspond to the remaining two elimination
steps.

E31 =






1 0 0

0 1 0

0 0 1




 E32 =






1 0 0

0 1 0

0 −2 1






The general rule for constructing an elimination matrix is this. If we are look-
ing at n equations in m unknowns, and an elimination step involves multiplying
equation j by a number q and subtracting it from equation i, then the elimi-
nation matrix Eij is simply the n × m “identity matrix” I, with aij = 0 in I
replaced by −q. For example, with 3 equations in 3 unknowns, and an elimina-
tion step that “multiplies equation 2 by 2 and subtracts from equation 3”:

I =






1 0 0

0 1 0

0 0 1




 E32 =






1 0 0

0 1 0

0 −2 1






Each elimination step therefore results in a multiplication of both sides of
Ax = b by the corresponding elimination matrix. In our example, the three
elimination steps give:

E32E31E21(Ax) = E32E31E21b

which, using the property of associativity of matrix multiplication is:

(E32(E31(E21A)))x = (E32E31E21)b

Or:

Ux = (E32E31E21)b = c (3.4)

where U is the upper triangular matrix E32A2 = E32(E31A1 = E32(E31(E21A)).
Here:

U =






1 2 1

0 2 −2

0 0 5




 c =






2

6

−10




 (3.5)



3.3. SOLUTION OF LINEAR EQUATIONS BY ELIMINATION 157

Before we leave this section, there is one aspect of elimination that we have
not yet considered. Let us look at the same equations as before, but in the
following order:

4y + z = 2

x + 2y + z = 2

3x + 8y + z = 12

The coefficient matrix A is then:

A =






0 4 1

1 2 1

3 8 1




 (3.6)

Now clearly, no amount of elimination can get this matrix into an upper tri-
angular form, since that would require a non-zero entry for a11. Since there
is no reason to keep the equations in this particular order, we can exchange
their order until we reach the one we had in the previous section. Just as a
single elimination step can be expressed as multiplication by an elimination
matrix, exchange of a pair of equations can be expressed by multiplication by a
permutation matrix.

The general rule for constructing a permutation matrix is this. If we are
looking at m equations in n unknowns, and we want to exchange equations i
and j, then the permutation matrix Pij is simply the m × n “identity matrix”
I, with rows i and j swapped:

I =






1 0 0

0 1 0

0 0 1




 P12 =






0 1 0

1 0 0

0 0 1






Multiplying a matrix A by P12 will swap rows 1 and 2 of A:






0 1 0

1 0 0

0 0 1











0 4 1

1 2 1

3 8 1




 =






1 2 1

0 4 1

3 8 1






What happens if, in spite of all exchanges, elimination still results in a 0 in
any one of the pivot positions? Then we consider the process to have failed,
and the equations do not have a solution. Assuming this does not happen,
we will reach a point where the original equation Ax = b is transformed into
Ux = c (as we did in Equation 3.4). The final step is that of back-substitution,
in which variables are progressively assigned values using the right-hand side of
this transformed equation (in Equation 3.3.1, z = −2, back-substituted to give
y = 1, which finally yields x = 2).
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3.4 Solution of Linear Equations by Matrix In-
version

So, it is possible to represent the steps leading to the solution of a set of linear
equations by elimination entirely as a sequence of matrix multiplications. We
now look at obtaining the solution by considering matrix “inversion”. What
we are trying to do is to really find a matrix analog for division with ordinary
numbers. There, with an equation like 5x = 20, we are able to get the answer
immediately using division: x = 20/5. Can we not do the same with matrices?
That is, given Ax = b, can we not get x = b/A. Well, not quite. But we can
get close: we find x = A−1b, where A−1 is the matrix equivalent of 1/A, and is
called the inverse of the matrix.

3.4.1 Inverse Matrices

The starting point is just the same as with numbers. We know a/a = aa−1 = 1
for a non-zero number a. For matrices, we want to find A−1 such that AA−1 = I
where I is the identity matrix. Actually, with matrices, we can ask for inverses
in two different ways: AA−1 and A−1A, called for obvious reasons, right and
left inverses of A (recall that since matrix multiplication does not necessarily
commute, these could be different).

Let us start with m× n (“square”) matrices. Our definition of an inverse is
simply this: if there exists a matrix A−1

L such that A−1
L A = I, where I is the

N × N identity matrix, then A−1
L is called the left inverse of A. On the other

hand, if there exists a matrix A−1
R such that AA−1

R = I, then A−1
R is called the

right inverse of A. Now, for square matrices, it is easy to see that the left and
right inverses are the same:

A−1
L (AA−1

R ) = (AA−1
L )A−1

R

Or,

A−1
L = A−1

R

So, for square matrices at least, we can simply talk about “the inverse” A−1.
The question that now concerns us is: do all square matrices have an inverse?
The short answer is “no”. Here is a matrix that is not invertible:

A =

[

1 3

2 6

]

(3.7)

We can see the conditions under which an inverse exists by referring back to the
matrix equation that formed the basis of solution by elimination:
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Ax = b

Let us assume that A−1 exists. Then, the solution reached by elimination would
simply be:

x = A−1b (3.8)

Therefore, if the inverse exists, then elimination must produce an upper trian-
gular matrix with non-zero pivots. In fact, the condition works both ways—if
elimination produces non-zero pivots then the inverse exists (you can see very
quickly that elimination applied to the matrix A in Equation 3.4.1 would give
give a row of 0s). Otherwise, the matrix is not invertible, or singular . Another
way to look at this is that the matrix will be singular if its “determinant” is 0.
We will look at what this means later (in Section 3.10), but it is related to the
elimination producing non-zero pivots.

If the inverse exists, then the only solution to the matrix equation Ax = b

is x = A−1b. This gives another way to test for the singularity of a matrix:
if there are solutions other than x = 0 to Ax = 0. For example, with A in
Equation 3.4.1, the vector x = [3,−1] is a solution to Ax = 0.

A final observation may be evident from the example in Equation 3.4.1. A
matrix is singular if the columns (or rows) are not linearly independent.

Now let us consider a slight variant of the matrix A in Equation 3.4.1:

A =

[

1 3

2 7

]

We believe that this matrix is invertible. How can we determine it’s inverse?
Let the inverse be

A−1 =

[

a c

b d

]

(3.9)

The system of equations AA−1 = I can be written as:

[

1 3

2 7

] [

a c

b d

]

=

[

1 0

0 1

]



160 CHAPTER 3. LINEAR ALGEBRA

Again, recall the view of matrix multiplication in which each column on the
right hand side is a linear combination of the columns of A:

[

1 3

2 7

] [

a

b

]

=

[

1

0

]

and

[

1 3

2 7

] [

c

d

]

=

[

0

1

]

So, once we solve these two sets of linear equations, we can assemble A−1 from
the values of a, b, c, and d. We are back, therefore, to solving linear systems of
equations— the Gaussian elimination procedure for a single set of linear equa-
tions with a single column vector on the right-hand side has to be generalised.
The process used is called the Gauss-Jordan procedure.

3.4.2 Gauss-Jordan Elimination

The Guass-Jordan elimination method addresses the problem of solving several
linear systems Axi = bi (1 ≤ i ≤ N) at once, such that each linear system has
the same coefficient matrix A but a different right hand side bi.

From Section 3.3, we know that Gaussian elimination is nothing more than
multiplication by elimination matrices, that transforms a coefficient matrix A
into an upper-triangular matrix U :

U = E32(E31(E21A)) = (E32E31E21)A

Here Eij is an elimination matrix constructed as we described before (replacing
the appropriate 0 in the identity matrix with a non-zero number). Of course,
we might, in general, be required to perform row permutation operations and
they will simply as appear as multiplication by permutation matrices. But, let
us ignore this complication for the moment. Suppose now we applied further
elimination steps until U was transformed into the identity matrix. This means
multiplication by more matrices:

I = E13(E12(E23(E32(E31(E21A))))) = (E13E12E23E32E31E21)A = BA
(3.10)
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By definition B = (E13E12E23E32E31E21) must be A−1. And this is what
Gauss-Jordan does: it simply runs the elimination steps further until the upper-
triangular matrix is converted into the identity matrix. So, A−1 can be com-
puted by applying the same sequence of elimination steps to the identity matrix.
A standard technique for carrying out the same elimination steps on two ma-
trices A and B is to create an augmented matrix [A B] and carry out the
elimination on this augmented matrix. Gauss-Jordan can therefore be sum-
marised in a single line: perform elimination steps on the augmented matrix
[A I] (representing the equation AB = I) to give the augmented matrix [I A−1]
(representing the equation IB = A−1). Or, in matrix multiplication terms: We
illustrate the process with the example matrix we looked at earlier:

[

1 3 1 0

2 7 0 1

]

Row2−2×Row1=⇒
[

1 3 1 0

0 1 −2 1

]

Row1−3×Row2=⇒
[

1 0 7 −3

0 1 −2 1

]

One could verify that the inverse of A is given by

A−1 =

[

7 −3

−2 1

]

(3.11)

Gauss-Jordan therefore gives us a method to construct the inverse of a co-
efficient matrix A, and therefore directly solve Ax = b as x = A−1b.

What if A is not a square matrix but rather a rectangular matrix of size
m × n, such that m 6= n. Does there exist a notion of A−1? The answer
depends on the rank of A.

• If A is full row rank and n > m, then AAT is a full rank m × m matrix
and therefore (AAT )−1 exists. The matrix AT (AAT )−1 yields the identity
matrix when multiplied to A on its right, i.e., AAT (AAT )−1 = I and is
called the right inverse of A. When the right inverse of A is multiplied
on its left, we get the projection matrix AT (AAT )−1A, which projects
matrices onto the row space of A.

• If A is full column rank and m > n, then AT A is a full rank n × n
matrix and therefore (AT A)−1 exists. The matrix (AT A)−1AT yields the
identity matrix when multiplied to A on its left, i.e., (AAT )−1AT A = I
and is called the left inverse of A. When the left inverse of A is multiplied
on its right, we get the projection matrix A(AT A)−1AT , which projects
matrices onto the column space of A.

What if A is neither full row rank nor full column rank? In Section 3.13, we
define the pseudoinverse of any m × n matrix, without any restrictions on its
rank.
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3.5 Solution of Linear Equations using Vector
Spaces

We now turn to the third approach for solving linear equations. This is, in
some sense, the most abstract, and involves the idea a vector spaces. A vector
space is a collection of vectors that, informally speaking, may be multiplied by a
number and added. More formally, a vector space is a set of vectors on which two
operations are defined: vector addition and scalar multiplication. Additionally,
these two operations satisfy certain natural conditions which we will elaborate
shortly. A well-known example is the vector space ℜ2. This consists of all 2
dimensional column vectors with real-valued components (this is also just the
entire xy plane). Similarly, the space ℜn comprises all n dimensional column
vectors with real-valued components.

More generally, if a set of vectors V is to qualify as a “vector space” then two
vector operations—addition and scalar multiplication—have to be defined, and
they have to result in vectors within the set V. The set, or space V is then said
to be “closed” under the operations of addition and scalar multiplication. Now,
given vectors u and v in a vector space, all scalar multiples of vectors au and
bv are in the space, as is their sum au + bv. That is, all linear combinations of
elements in the space are also elements of the space ((V ) is closed under linear
combination). If a subset (VS) of any such space is itself a vector space (that
is, (VS) is also closed under linear combination) then (VS) is called a subspace
of (V ). All this may seem a bit abstract, and some examples may help:

1. The set of vectors ℜ2 consisting of all two-dimensional vectors with real-
valued components is a vector space. Adding any two vectors in the set
gives a vector that is also in the set. Scalar multiplication of any vector in
the set is a vector also in ℜ2 (you may find these easy to see by visualising
the vectors in the xy plane).

2. The set of vectors (ℜ2)+ consisting of all two-dimensional vectors in the
positive quadrant is not a vector space. Adding a pair of vectors in (ℜ2)+
results in a vector in (ℜ2)+). But, unfortunately, multiplying by a scalar
may not. For example, every vector −3v (v ∈ (ℜ2)+) does not belong to
(ℜ2)+.

3. The subset ℜ3
S of ℜ3 consisting of vectors of any length through the origin

(0, 0, 0) is a subspace of ℜ3. Adding vectors in ℜ3
S clearly results in an

element of the set, as does multiplication by a scalar. It is important that
the origin (0, 0, 0) is included: otherwise, multiplication of a vector by 0
would result in a vector not in the subset.

3.5.1 Vector Spaces and Matrices

Our condition on vector spaces has nothing really to do with vectors: all we
need is that a pair of operations, addition and scalar multiplication be defined
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on a set of elements. So, we are now ready to go a further step, and drop the
restriction that vector spaces consist only of vectors. We can, for example, talk
of a “vector” space M consisting of all 2 × 2 matrices. It is easy to check that
this is indeed closed under (matrix) addition and scalar multiplication (we have
not come across this before: it is simply the multiplication of every element
of the matrix by the number comprising the scalar). Just as with vectors, a
subspace of M is then some subset that is also a vector space.

Vector spaces of matrices provide a novel way of looking at the solution of
Ax = b. Recall that Ax is simply a linear combination of the columns of the
matrix A. All possible linear combinations of the columns produce a set of all
possible column vectors (in effect, all possible b’s). This set is called the column
space of A, or C(A). Given b, therefore, when we ask: is there a solution to
Ax = b, we are really asking if the particular b we are given is in the column
space of A. An example may help. Consider the matrix A:

A =









1 1 2

2 1 3

3 1 4

4 1 5









The column space C(A) is a subspace of ℜ4 (are you sure you understand why
this is so?). We can ask an number of questions now. What is in this subspace?
Obviously, each column of A is in C(A). Additionally, C(A) contains all linear
combinations of the columns of A. Is C(A) the entire 4−dimensional space ℜ4?
If not, how much smaller is C(A) compared to ℜ4?

Equivalently, we can pose this problem as follows. Consider the linear system
Ax = b. For which right hand sides b does a solution x always exist? A
solution x definitely does not exist for every right hand side b, since there are
4 equations in 3 unknowns. Let us analyse this further by writing down the
system of equations

Ax =









1 1 2

2 1 3

3 1 4

4 1 5














x1

x2

x3




 =









b1

b2

b3

b4









(3.12)

Our first point is that there are many vectors b which cannot be expressed
as the linear combination of the columns of A. That leads to the question, which
right hand side b allows the equation to be solved. One value of b for which the
equation can be solved is the zero vector, for which the corresponding solution
is x = 0. Three other trivial values of b are the values corresponding to every
column of A. In particular, we can solve Ax = b whenever b is in the column
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space C(A). When b is a combination of columns of A, the combination tells
us what exactly x must be.

Do all the columns of A contribute something ‘new’ to the space C(A)1? In
other words, can we get the same space C(A) using less than three columns of
A? In this particular example, the third column of A is a linear combination of
the first two columns of A. C(A) is therefor a 2−dimensional subspace of ℜ4.
In general, if A is an m × n matrix, C(A) is a subspace of ℜm.

3.5.2 Null Space

The null space of a matrix A, referred to as N(A), is the space of all solutions
to the equation Ax = 0. The null space of an m × n matrix A is a subspace of
ℜn.

Consider the example matrix A discussed in the previous section. Its null
space is a subspace of ℜ3. We will try to figure out the null space of the matrix
A by observing the following system of equations:

Ax =









1 1 2

2 1 3

3 1 4

4 1 5














x1

x2

x3




 =









0

0

0

0









(3.13)

One obvious solution to the system is the zero vector. The null space will
always contain the zero vector. Making use of the observation that the columns
of A are linearly dependent, we find a second solution to the system as:

x∗ =






1

1

−1




 (3.14)

Thus, x∗ is in the null space N(A). Every multiple of x∗ is also in the null
space. Each element of the null space N(A) is of the form

c.x∗ =






c

c

−c




 (3.15)

1In subsequent sections, we will refer to these columns as pivot columns.
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where c ∈ ℜ. Thus, the null space N(A) is the line passing through the zero
vector [0 0 0] and [1 1 − 1].

Do solutions to Ax = 0 always yield a vector space? The answer is yes and
this can be proved by observing that if Av = 0 and Aw = 0, then A(v+w) = 0
and A(pv) = 0 where p ∈ ℜ. In general, there are two equivalent ways of
specifying a subspace.

1. The first way is to specify a bunch of vectors whose linear combinations
will yield the subspace.

2. The second way is to specify a system of equations of the form Ax = 0

and any vector x the satisfies the system is an element of the subspace.

What about the set of all solutions to the equation Ax = b - do elements
of this set form a space? The answer is a no. An easy way to see this is that
the zero vector is not a solution to this system (unless b is the zero vector) and
hence the solutions cannot form a space.

3.6 Elimination for Computing the Null Space
(Ax = 0)

In the last section we defined the null space of a matrix A. In this section,
we will turn the definition into an algorithm using the elimination technique
discussed in Section 3.3. We will take as an example, the following rectangular
matrix A

A =






1 2 2 2

2 4 6 8

3 6 8 10




 (3.16)

3.6.1 Pivot Variables and Row Echelon Form

We note rightaway that column 2 of A is a multiple of column 1 - it is in the same
direction as column 1 and is therefore not indepedent. We expect to discover
that in the elimination process for computing the null space N(A). In terms
of rows, we observe that the third row is the sum of the first two rows. Thus,
the rows are also not independent - and again we hope to discover that in the
elimination process.

In essence, what elimination does is change the matrix A and consequently
its column space, while leaving the null space of A intact. We first choose the
element in position [1, 1] as the pivot element and perform the steps (2, 1) and
(3, 1) (recall the definition of a step from Section 3.3) to get the transformed
matrix A1.
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A1 =






[1] 2 2 2

0 0 2 4

0 0 2 4




 (3.17)

We have got the first column in the desirable form. So next, we try to use
the element in position [2, 2] as the pivot element. But unfortunately it is a 0.
We look below it position [3, 2] hoping for a non-zero element so that we can do
a row exachange. But there is a zero below as well! That tells us that second
column is dependent on the first column.

Since we have nothing to do with the second column, we move to the thrid
column and choose the entry [2, 3] as the pivot. We perform the next elimination
step (3, 2), and obtain a third row of zeros. We will denote the resultant matrix
by U . Note that the pivots are marked in boxes.

U =






[1] 2 2 2

0 0 [2] 4

0 0 0 0




 (3.18)

The matrix U is in the row echelon form. A matrix is said to be in row
echelon form if it satisfies the following requirements:

1. All nonzero rows are above any rows of all zeroes.

2. The leading coefficient of a row is always strictly to the right of the leading
coefficient of the row above it.

While reducing from the matrix A to U , we used only two pivots. In fact,
we have already discovered the most important number about the matrix A.
The number of pivots is 2 - which is also the rank of the matrix.

Fact: The rank of a matrix is the number of pivots used while reducing it to the
row echelon form using elimination.

We can now solve Ux = 0, which has the same solution as Ax = 0 (since
the elimination steps on zero vector always yield a zero vector). Thus, the null
space of U is the same as that of A. How do we describe these solutions? We
will first write down the equations corresponding to Ux = 0.

x1 + 2x2 + 2x3 + 2x4 = 0

2x3 + 4x4 = 0

We will descrie the solution by first separating out the two columns contain-
ing the pivots, referred to as pivot columns and the remaining columns, referred
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to as free columns. Variables corresponding to the free columns are called free
variables, since they can be assigned any value. Variables corresponding to the
pivot columns are called pivot variables, and their values can be determined
based on the values assigned to the free variables. In our example, variables x2

and x4 are free variables while x1 and x3 are the pivot variables.
Let us say we use the following assignment of values to free variables: x2 = 1,

x4 = 0. Then, by back substition, we get the following values: x1 = −2 and
x3 = 0. Thus, the following vector x′ is a solution to the system Ux = 0 (and
consequently the solution to Ax = 0) and therefore lies in N(A).

x′ =









−2

1

0

0









(3.19)

This solution reiterates our first observation, viz., that column 2 is a multiple
of column 1.

We will find some more vectors in the null space. Any multiple c.x′, cℜ is
also in N(A). Note that c.x′ is a line. Are these the only vectors in N(A)?
Actually, no – we obtained this set of vectors by assigning only one set of values
to the free variables x2 and x4. We assign another set of values x2 = 0, x4 = 1,
and obtain the values of x1 and x3 by back-substitution to get another vector
x′′ in N(A).

x′′ =









2

0

−2

1









(3.20)

Now we are in a position to specify all vectors in N(A). The null space will
contain all linear combinations of the two special solutions x′ and x′′. Every
vector in N(A) therefore has the form given in (3.21):

ax′ + bx′′, a ∈ ℜ, b ∈ ℜ (3.21)

What is the number of special (linearly independent) solutions for Ax = 0

if A is an m × n matrix? As we saw earlier, the rank r of a matrix equals the
number of pivots. The number of free variables is given by

no. of free variables = n − r
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The number of special solutions is exactly equal to the number of free vari-
ables. In the above example, we had n = 4, r = 2 and therefore number of free
variables was 2. The steps for characterizing the null space of a matrix A can
be summarized as follows:

1. Reduce A to the row echelon form.

2. If r is the number of pivots, find the k = n − r free variables.

3. Make k different assignments to the free variables. For each assignment,
use backsubstitution (using the row echelon form) to find the values of the
pivot variables. Each assignemt to the free variables yields a vector in the
null space.

3.6.2 Reduced Row Echelon Form

We will take a second look at the matrix U that we obtained by elimination.

U =






[1] 2 2 2

0 0 [2] 4

0 0 0 0




 (3.22)

The last row of U is composed of zeroes. This is because row 3 of A was a linear
combination of rows 1 and 2 and this fact was discovered by elimination. How
can we clean U up further? We can do elimination upwards to get zeros above
as well as below the pivots. Elimination step (2, 1) on U yields the matrix U ′.

U ′ =






[1] 2 0 −2

0 0 [2] 4

0 0 0 0




 (3.23)

Further, we will make all pivot elements equal to 1 by dividing the corre-
sponding row by the pivot element. This yields the matrix R.

R =






[1] 2 0 −2

0 0 [1] 2

0 0 0 0




 (3.24)

The matrix R has zeroes above and below each pivot. This matrix is called
the reduced row echelon form (rref) of A. Matlab has the function rref(A) that
returns the reduced row echelon form of A. The system of equations Rx = 0 is
given as
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x1 + 2x2 − 2x4 = 0

x3 + 2x4 = 0

The solution to this system is the same the solution to the original system of
equations Ax = 0. By simple back-substitution, the vector x can be expressed
as:

x =









x1

x2

x3

x4









=









−2 2

1 0

0 −2

0 1









[

x2

x4

]

(3.25)

Note that the specification of the null space in equation 3.25 is the same as
that in equation 3.21.

Let us suppose that we have already got a matrix A in the reduced row
echelon form (rref) R. Further, let us pretend that the pivot columns I come
before the free columns F . The matrix R can be written as

R =

[

I F

0 0

]

(3.26)

This block matrix is a very typical rref. We can easily do all the special
solutions at once. We will create a null basis N whose columns are the special
solutions; i.e., RN = 0. The following N satisfies this system:

N =

[

−F

I

]

=









−2 2

0 −2

1 0

0 1









(3.27)

In fact there is a Matlab command null(A) that returns the null basis of A.
It first computes the rref of A and then composes N using the free columns of
A as well as the identity matrix of size equal to the rank of A.

Next, we will llustrate the same sequence of steps on the transpose matrix
At to obtain its row echelon form U and observe the pivots, rank and null space.
The solution to Atx = 0 is a column vector of size 3. Notice that the rank of
the transpose is again 2 and is the same as the number of pivot columns. There
is a single free column corresponding to the free variable x3.
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







[1] 2 3

2 4 6

2 6 8

2 8 10









E2,1,E3,1,E4,1
=⇒









1 2 3

0 0 0

0 2 2

0 4 4









P2,3

=⇒









1 2 3

0 [2] 2

0 0 0

0 4 4









E4,2

=⇒









[1] 2 3

0 [2] 2

0 0 0

0 0 0









(3.28)

Suppose we make the following assignment to the free variable x3 = −c.
Then the solution is given by






−c

−c

c




 = c






−1

−1

1




 (3.29)

Thus, the null space of At is a line. Taking the elimination steps forward,
we can get the reduced row echelon form (as a block matrix) R for matrix At.









[1] 2 3

0 [2] 2

0 0 0

0 0 0









E1,2

=⇒









[1] 0 1

0 [2] 2

0 0 0

0 0 0









(Row2
2 )

=⇒









[1] 0 1

0 [1] 1

0 0 0

0 0 0









of the form⇐⇒
[

I F

0 0

]

(3.30)

The null basis N is

N =

[

−F

I

]

=

[

−F

I

]

=






−1

−1

1




 (3.31)

3.6.3 Solving Ax = b

In this sub-section we will illustrate how to completely solve the system Ax = b,
if there is a solution. If there is no solution, we will need to identify this fact
and if there is some solution, we need to identify how many solutions it has.
Our running example will be a system of equations with the same coefficient
matrix A that was considered in the previous section (3.6).
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Ax =






1 2 2 2

2 4 6 8

3 6 8 10














x1

x2

x3

x4









=






b1

b2

b3




 (3.32)

The third row is the sum of rows 1 and 2. In other words, if we add the left
hand sides, we get the third left hand sides. So we can predict right away what
elimination will discover about the right hand side. What is the condition that
b1, b2 and b3 satisfy so that there is a solution? Since the sum of the first two
left hand sides equals the third left hand side, we require that b1 + b2 = b3.

Let us see how elimination discovers this fact. If some combination on the
left hand side gives zeros, the same combination on the right hand side should
give zeros. Tacking on the vector of b’s as another column to the matrix A, we
get the augmented matrix [A b]. Applying the elimination steps E2,1 and E3,1

to the augmented matrix, followed by the elimination step E3,2, we get:

[A b] =






1 2 2 2 b1

2 4 6 8 b2

3 6 8 10 b3






E2,1,E3,1
=⇒






[1] 2 2 2 b1

0 0 [2] 4 b2 − 2b1

0 0 2 4 b3 − 3b1






E3,2
=⇒






[1] 2 2 2 b1

0 0 [2] 4 b2 − 2b1

0 0 0 0 b3 − b1 − b2




(3.33)

The condition for solvability is therefore b3 − b1 − b2 = 0. Thus, the system
of equations will have a solution for b = [5 1 6]

T
.

We will now discuss the solvability conditions on the right hand side of a
system of equations to ensure that the system of equations Ax = b is solvable.
We will provide a definition in terms of the column space.

The system of equations Ax = b is solvable when b is in the column space
C(A).

Another way of describing solvability is:
The system of equations Ax = b is solvable if a combination of the rows of

A produces a zero row, the requirement on b is that the same combination of
the components of b has to yield zero.

It is not immediately apparent that the two systems of equations are equiv-
alent. We will come back to discuss this in a later part of the course. We will
proceed to the case when the system of equations does have a solution.

Assuming that the systems of equations Ax = b is solvable, what is the
algorithm (or sequence of steps) to find the complete solution? We will start by
finding one particular solution.
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1. xparticular
2: Set all free variables (corresponding to columns with no piv-

ots) to 0. In the example above, we should set x2 = 0 and x4 = 0.

2. Solve Ax = b for pivot variables.

This leaves us with the equations

x1 + 2x3 = b12x3 = b2 − 2b1

Adopting the normal back substitution method, we get

x3 =
b2 − 2b1

2
x1 = b2 + 3b1 (3.34)

Thus the particular solution is

xparticular =









b2 + 3b1

0
b2−2b1

2

0









For example, if we choose b = [5 1 6]
T
, we get

xparticular =









−2

0
3
2

0









The sequence of steps is (a) check for solvability conditons (b) substitute
some values for the free variables and obtain values for pivot variables. How
do we find the complete solution to Ax = b? It is easy to see that any vector
xnullspace in the null space of the matrix A can be added to xparticular and the
resultant vector will still remain a solution. Thus, a general solution to the
system Ax = b is

xcomplete = xparticular + xnullspace (3.35)

Let us write out the complete solution to this example (recall the null space
for this matrix from Equation 3.25).

2Since there are many solutions, one could have one’s own way of finding one solution.
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xcomplete =









−2

0
3
2

0









+









−2 2

1 0

0 −2

0 1









[

c1

c2

]

(3.36)

This pattern shows up in all of mathematics, whenever we have linear equa-
tions. The reason for this is that

Axcomplete = A(xparticular + xnullspace) = b + 0 = b

In words, this means that if we have one solution, we can add on anything
in the null space. This gives us the ‘complete’ solution. Note that while the
null vector can be scaled arbitrarily, the same does not hold for the particular
solution.

Let us say we want to plot all solutions to this equation. The plot should
be in ℜ4 because there are 4 unknowns. Does the set of solutions to Ax = b

form a subspace? No, because the space of solutions to this system is not closed
under the scaling operation. The null space is a 2-dimensional3 subspace inside
ℜ4. The set of solutions to Ax = b does not however pass through the origin,
because it must pass through xparticular and then onward. It is like a sub-space
shifted away from the origin!

In summary, the algorithm is to go through elimination, find a particular
solution and then a special solution. We will now visualize the bigger picture
by answering some questions. Consider an m × n matrix A of rank r.

Q1. What is the relationship between m and r? We know certainly that
r ≤ m and r ≤ n. This because, each row as well as column can contain only
one pivot and therefore the number of pivots should be less than the number of
rows as also less than the number of columns.

Q2. What happens when the rank r is as big as it can be? There are two
possibilities here, depending on what the numbers m and n are.

Q3. In the case that A is full column rank, i.e., r = n, what can we infer
about the null space and the complete solution? Full column rank implies that
there is a pivot in every column, that is, there are n pivots. As a result,there
are no free variables. The implication is that the null space will only have the
0 vector. Therefore, the complete solution is just xparticular; there is just one
solution, if there is one at all. Thus, the number of solutions is either 0 or 1.
There are many applications in reality where the columns are independent and
have nothing to look for in the null space, leading to just a particular solution.

We will illustrate by squeezing in an example.

3The dimension of the subspace corresponds to the number constants you can choose.
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A =









1 3

2 1

6 1

5 1









(3.37)

The rank of this matrix is 2; elimination will yield exactly 2 pivots. Carrying
out the elimination process to the end, we can get the following reduced row
echelon form for this matrix:

Arref =









1 0

0 1

0 −17

0 −14









(3.38)

The first two rows are not dependent, but the other rows are coibinations
of the first two rows. It is a case of full column rank. Ax = b is a system of
four equations in two unknowns. If the right hand side is not consistent with
the 4 equations, we will get zero solutions. The right hand side b = [4 3 7 6]T

is consistent with the equations and yields one solution. Similarly, the right
hand side b which is the sum of the two independent columns of A also gives
one unique solution x = [1 1]T . We will maintain the natural symmetry of this
discussion by next looking at full row rank.

Q4. In the case that A is full row rank, i.e., r = m, what can we infer about
the null space and the complete solution? Elimination will lead to m pivots;
every row will have a pivot. What is the implication on solvability, i.e., for
which right hand sides will we have a solution to Ax = b? Since we do not
have any zero rows, we can solve the system for every right hand side b. This
resolves the question about the existence of a solution. How many free variables
will we have? Since n ≥ r, we will be left with n − r = n − m free variables.

An easy way to obtain an example here (matrix B) is to transpose the above
full column rank example matrix A.

B = AT =

[

1 2 6 5

3 1 1 1

]

(3.39)

Elimination yields the following row reduced echelon form with two pivots:

[

1 0 4 3

0 1 −11 −8

]

(3.40)
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Figure 3.3: Summary of the properties of the solutions to the system of equations
Ax = b.

The number of free variables is 2.
Q5. In the case that A is full rank, i.e., r = m = n, what can we infer about

the null space and the complete solution?
This is the most important case of all. We will illustrate with an example.

A =

[

1 2

3 1

]

(3.41)

The reduced row echelon form for this matrix is

A =

[

1 0

0 1

]

(3.42)

The matrix is invertible; invertible matrices come out naturally in the rref
which is the identity matrix. Which are the satisfiable right hand sides b for the
system Ax = b? Since there are no zero rows, there are no constraints on the
right hand side. What is the null space of A? It is the zero vector only. Since
the rank is also m, the only solution is the particular solution, and is therefore
a unique solution.

Figure 3.3 summarizes the properties of the solutions to the system of equa-
tions Ax = b for different inequality constraints between m, n and r. The rank
summarizes the possible solutions, except the exact entries in the solutions.

3.7 Independence, Basis, and Dimension

In this section, we will develop the ideas of linear independence of vectors, the
space vectors span, basis for vector spaces and finally the dimension of vector
spaces. We will assign clear meanings to these terms.
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To set the appropriate background, we will begin with a highly important
fact which was mentioned earlier. Let us say we have the system Ax = 0, where
A is an m × n matrix and m < n. That is, we have more unknowns than
equations. The conclusion is that there there are some non-zero vectors in the
null space of A. If we perform elimination on A, we will get some pivots and
some free columns that do not have pivots because there will be n − m free
variables. We can assign non-zero values to the free variables and automatically
obtain values for the pivot variables. We will resume from this point.

3.7.1 Independence

Independence Vectors x1,x2, . . . ,xn are independent if no linear combination
gives the zero vector, except the zero combination. That is, ∀c1, c2, . . . , cn ∈

ℜ, such that not all of the ci’s are simultaneously 0,
n∑

i

cixi 6= 0 .

For example, in a two dimensional space, a vector x and twice the vector 2x
are dependent, because (−2) × x + (1) × 2x = 0. As another example, suppose
we have the vectors v1 and a zero vector vector v2, they are dependent because
(0) × v1 + (100) × v2 = 0.

On the other hand, two non-zero vectors v1 and v2 in a two dimensional
space that make an angle 0 < θ < π

2 with each other will be independent. If
we however add a third vector v3 from the two dimensional space to the set,
the three vectors will now be dependent. How do we determine the truth of the
above two statements? We could do this as follows. We construct a matrix A
with the vectors as three columns A = [v1 v2 v3]. This matrix is a 2× 3 matrix.
Does there exist a non-zero solution to the following system?

Ac =
[

v1 v2 v3

]






c1

c2

c3




 =

[

0

0

]

(3.43)

It can be easily proved that a non-zero vector [c1 c2 c3]
T exists. We will

restate the definition for independence in terms of the columns v1,v2, . . . ,vn of
a matrix A.

Independence The columns v1,v2, . . . ,vn of a matrix A are independent if
the null-space of A is the zero vector. The columns of A are dependent
only if Ac = 0 for some c 6= 0.

In other words, the rank of the matrix A, whose columns are independent is
the number of columns n. And in the reduced echelon form, all columns will be
pivot columns with no free variables. If the columns are dependent, the rank of
A will be less than n, and there will be free variables.
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What does it mean for a bunch of vectors to span a space? Recall that
we could take all combinations of the columns of a matrix to yield the column
space. This column space is the space spanned by the columns of the matrix.

Space spanned by vectors: Vectors v1,v2, . . . ,vn span a space means that
the space consists of all linear combinations of the vectors. Thus, the space
spanned by the columns v1,v2, . . . ,vn of a matrix A, is the column space
of A.

3.7.2 Basis and Dimension

The vectors v1,v2, . . . ,vn, need not be independent in order to span a space.
We are specifically interested in a set of vectors that span a space and are at
the same time linearly independent. This set of vectors is in some sense, the
right number of vectors; even without a single vector from this set, the space
cannot be defined. This set is called the basis.

Basis for a space: The basis for a space is a set of vectors v1,v2, . . . ,vn

with two properties, viz., (1) The vectors v1,v2, . . . ,vn are independent
and (2) These vectors span the space.

The definition of basis is hinged on the preceeding two definitions - the basis
is the set of vectors that is necessary and sufficient for spanning the space. As
an example, one basis for the four dimensional space ℜ4 is:









1

0

0

0









,









0

1

0

0









,









0

0

1

0









,









0

0

0

1









(3.44)

It is easy to verify that the above vectors are independent; if a combination
of the vectors using the scalars in [c1, c2, c3, c4] should yield the zero vector, we
must have c1 = c2 = c3 = c4 = 0. Another way of proving this is by making the
four vectors the columns of a matrix. The resultant matrix will be an identity
matrix. The null space of an identity matrix is the zero vector. The above basis
is often called the standard basis for ℜ4.

This is not the only basis of ℜ4. Consider the following three vectors









2

0

0

0









,









0

0

2

0









,









0

0

0

2









(3.45)
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These vectors are certainly independent. But they do not span ℜ4. This can
be proved by showing that the following vector in ℜ4 cannot be expressed as a
linear combination of these vectors.









0

2

0

0









(3.46)

In fact, if this vector is added to the set of three vectors in (3.45), together,
they define another basis for ℜ4. And this could be proved by introducing them
as columns of a matrix A, subject A to row reduction and check if there are any
free variables (or equivalently, whether all columns are pivot columns). If there
are no free variables, we can conclude that the vectors form a basis for ℜ4. This
is also equivalent to the statement that if the matrix A is invertible, its columns
form a basis for its column space. This statement can be generalized to ℜn: if
an n × n matrix A is invertible, its coulumns for a basis for ℜn.

While there can be many bases for a space, a commonality between all the
bases is that they have exactly the same number of vectors. This unique size of
the basis is called the dimension of the space.

Dimension: The number of vectors in any basis of a vector space is called the
dimension of the space.

Do the vectors in (3.45), form a basis for any space at all? The vectors are
independent and therefore span the space of all linear combinations of the three
vectors. The space spanned by these vectors is a hyperplane in ℜ4. Let A be
any matrix. By definition, the columns of A span the column space C(A) of A.
If there exists a c 6= 0 such that, Ac = 0, then the columns of A are not linearly
independent. For example, the columns of the matrix A given below are not
linearly independent.

A =






1 2 3 1

2 3 5 2

3 4 7 3




 (3.47)

A choice of c = [−1 0 0 1]
T

gives Ac = 0. Thus, the columns of A do not
form a basis for its columns space. What is a basis for C(A)? A most natural
choice is the first two columns of A; the thid column is the sum of the first and
second columns, while the fourth column is the same as the first column. Also,
column elimination4 on A yields pivots on the first two columns. Thus, a basis
for C(A) is

4Column elimination operations are very similar to row elimination operations.
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




1

2

3




 ,






2

3

4




 (3.48)

Another basis for C(A) consists of the first and third columns. We note that
the dimension of C(A) is 2. We also note that the rank of A is the number of
its pivots columns, which is exactly the dimension of C(A). This gives us a nice
theorem.

Theorem 32 The rank of a matrix is the same as the dimension of its column
space. That is, rank(A) = dimension (C(A)).

What about the dimension of the null space? We already saw that c =
[−1 0 0 1]

T
is in the null space. Another element of the null space is c′ =

[1 1 − 1 0]
T
. These vectors in the null space specify combinations of the columns

that yield zeroes. The two vectors c and c′ are obviously independent. Do these
two vectors span the entire null space? The dimension of the null space is the
same as the number of free variables, which happens to be 4 − 2 = 2 in this
example. Thus the two vectors c and c′ must indeed span the null space. In
fact, it can be proved that the dimension of the null space of an m × n matrix
A is n − rank(A).

The space spanned by the rows of a matrix is called the row space. We can
also define the row space of a matrix A as the column space of its transpose AT .
Thus the row space of A can be specified as C(AT ). The null space of A, N(A)
is often called the right null space of A, while the null space of AT , N(AT ) is
often referred to as its left null space. How do we visualize these four spaces?
N(A) and C(AT ) of an m × n matrix A are in ℜn, while C(A) and N(AT ) are
in ℜm. How can we construct bases for each of the four subspaces? We note
that dimensions of C(A) and the rank of C(AT ) should be the same, since row
rank of a matrix is its column rank. The bases of C(A) can be obtained as the
set of the pivot columns.

Let r be the rank of A. Recall that the null space is constructed by linear
combinations of the special solutions of the null space (3.5.2) and there is one
special solution for each assignment of the free variables. In fact, the number
of special solutions exactly equals the number of free variables, which is n − r.
Thus, the dimension of N(A) will be n − r. Similarly, the dimension of N(AT )
will be m − r.

Let us illustrate this on the sample matrix in (3.47).






1 2 3 1

2 3 5 2

3 4 7 3






E2,1,E3,1

=⇒






1 2 3 1

0 −1 −1 0

0 −2 −2 0






E3,2

=⇒ (R =)






1 2 3 1

0 −1 −1 0

0 0 0 0






(3.49)
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The reduced matrix R has the same row space as A, by virtue of the nature
of row reduction. In fact, the rows of A can be retrieved from the rows of R
by reversing the linear operations involved in row elimination. The first two
rows give a basis for the row space of A. The dimension of C(AT ) is 2, which
is also the rank of A. To find the left null space of A, we look at the system
yT A = 0. Recall the Gauss-Jordan elimination method from Section 3.4.2 that
augments A with an m × m identity matrix, and performs row elimination on
the augmented matrix.

[A Im×m]
rref
=⇒ [R Em×m]

The rref will consist of the reduced matrix augmented with the elimination
matrix reproduced on its right. For the example case in 3.49, we apply the same
elimination steps to obtain the matrix E below:






1 0 0

0 1 0

0 0 1






E2,1,E3,1

=⇒






1 0 0

−2 1 0

−3 0 1






E3,2

=⇒ (E =)






1 0 0

−2 1 0

1 −2 1




 (3.50)

Writing down EA = R,






1 0 0

−2 1 0

1 −2 1











1 2 3 1

2 3 5 2

3 4 7 3




 =






1 2 3 1

0 −1 −1 0

0 0 0 0




 (3.51)

We observe that the last row of E specifies a linear combination of the rows
of A that yields a zero vector (corresponding to the last row of R). This is the
only vector that yields a zero row in R and is therefore the only element in the
basis of the left null space of A, that is, N(AT ). The dimension of N(AT ) is 1.

As another example, consider the space S of vectors v ∈ ℜ3 where v =
[v1 v2 v3]

T such that v1 +v2 +v3 = 0. What is the dimension of this subspace?
Note that this subspace is the right null space N(A) of a 1×3 matrix A = [1 1 1],
since Av = 0. The rank, r = rank(A) is 1, implying that the dimension of
the right null space is n − r = 3 − 1 = 2. One set of basis vectors for S is
[−1 1 0], [−1 0 1]. The column space C(A) is ℜ1 with dimension 1. The left
null space N(AT ) is the singleton set {0} and as expected, has a dimension of
m − r = 1 − 1 = 0.

3.8 Matrix Spaces

We will extend the set of examples of vector spaces discussed in Section 3.5 with
a new vector space, that of all m×n matrices with real entries, denoted by ℜm×n.
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It is easy to verify that the space of all matrices is closed under operations of
addition and scalar multiplication. Additionally, there are interesting subspaces
in the entire matrix space ℜm×n, viz.,

• set S of all n × n symmetric matrices

• set U of all n × n upper triangular matrices

• set L of all n × n lower triangular matrices

• set D of all n × n diagonal matrices

Let M = ℜ3×3 be the space of all 3× 3 matrices. The dimension of M is 9.
Each element of this basis has a 1 in one of the 9 positions and the remaining
entries as zeroes. Of these basis elements, three are symmetric (those having
a 1 in any of the diagonal positions). These three matrices form the basis for
the subspace of diagonal matrices. Six of the nine basis elements of M form the
basis of U while six of them form the basis of L.

The intersection of any two matrix spaces is also a matrix space. For ex-
ample, S ∩ U is D, the set of diagonal matrices. However the union of any two
matrix spaces need not be a matrix space. For example, S ∪ U is not a matrix
space; the sum S + U, S ∈ S, U ∈ U need not belong to S ∪U . We will discuss
a special set comprising all linear combinations of the elements of union of two
vector spaces V1 and V2 (i.e., V1 ∪ V2), and denote this set by V1 ⊕ V2. By
definition, this set is a vector space. For example, S+U = M, which is a vector
space.

A property fundamental to many properties of matrices is the expression for
a rank 1 matrix. A rank 1 matrix can be expressed as the product of a column
vector with a row vector (the row vector forming a basis for the matrix). Thus,
any rank 1 matrix X can be expressed as

Xm×n = uT v =














u1

u2

u3

.

.

um














[

v1 v2 . . . vn

]

(3.52)

Let Mm×n be the set of all m×n matrices. Is the subset of Mm×n matrices
with rank k, a subspace? For k = 1, this space is obviously not a vector space
as is evident from the sum of rank 1 matrices, A1 and B1, which is not a rank
1 matrix. In fact, the subset of Mm×n matrices with rank k is not a subspace.

A1 + B1 =






1 2 1

2 4 1

1 2 1




 +






4 4 2

2 2 1

4 4 2




 =






5 6 3

4 6 2

5 6 3




 (3.53)
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3.9 Orthogonality and Projection

In this section we will discuss the orthogonality of subspaces. Two vectors x

and y are said to be orthogonal iff, their dot product is 0. In the eucledian
space, the dot product of the two vectors is xT y. The condition xT y = 0 is
equivalent to the pythagorous condition between the vectors x and y that form
the perpendicular sides of a right triangle with the hypotenuse given by x + y.
The pythagorous condition is ||x||2 + ||y||2 = ||x + y||2, where the norm is the
eucledian norm, given by ||x||2 = xT x. This equivalence can be easily proved
and is left to the reader as an exercise. By definition, the vector 0 is orthogonal
to every other vector.

We will extend the definition of orthogonality to subspaces; a subspace U is
orthogonal to subspace V iff, every vector in U is orthogonal to every vector in
V. As an example:

Theorem 33 The row space C(AT ) of an m × n matrix A is orthogonal to its
right null space N(A).

Proof: Ax = 0, ∀x ∈ N(A). On the other hand, ∀ y ∈ C(AT ), ∃ z ∈
ℜm, s.t., y = AT z. Therefore, ∀ y ∈ C(AT ), x ∈ N(A),yT x = zT Ax =
z.0 = 0. 2

Not only are C(AT ) and the right null space N(A) orthogonal to each other,
but they are also orthogonal complements in ℜn, that is, N(A) contains all
vectors that are orthogonal to some vector in C(AT ).

Theorem 34 The null space of A and its row space are orthogonal comple-
ments.

Proof: We note, based on our discussion in Section 3.7.2 that the dimensions of
the row space and the (right) null space add up to n, which is the number of
columns of A. For any vector y ∈ C(AT ), we have ∃ z ∈ ℜm, s.t., y = AT z.
Suppose ∀ y ∈ C(AT ), yT x = 0. That is, ∀ z ∈ ℜm, zT Ax = 0. This is
possible only if Ax = 0. Thus, necessarily, x ∈ N(A). 2

Along similar lines, we could prove that the column space C(A) and the left
null space N(AT ) are orthogonal complements in ℜm. Based on theorem 34,
we prove that there is a one-to-one mapping between the elements of row space
and column space.

Theorem 35 If x ∈ C(AT ), y ∈ C(AT ) and x 6= y, then, Ax 6= Ay.

Proof: Note that Ax and Ay are both elements of C(A). Next, observe that
x − y ∈ C(AT ), which by theorem 34, implies that x − y /∈ N(A). Therefore,
Ax − Ay 6= 0 or in other words, Ax 6= Ay. 2

Similarly, it can be proved that if x ∈ C(A), y ∈ C(A) and x 6= y, then,
AT x 6= AT y. The two properties together imply a one-to-one mapping between
the row and column spaces.
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3.9.1 Projection Matrices

The projection of a vector t on a vector s is a vector p = cs, c ∈ ℜ (in the same
direction as s), such that t − cs is orthogonal to s. That is, sT (t − cs) = 0 or

sT t = csT s). Thus, the scaling factor c is given by c = s
T
t

sT s
. The projection of

the vector t on a vector s is then

p = s
tT s

sT s
(3.54)

Using the associative property of matrix multiplication, the expression for p

can be re-written as

p = P t (3.55)

where, P = ssT 1
sT s

is called the projection matrix.
The rank of the projection matrix is 1 (since it is a column mutiplied by

a row). The projection matrix is symmetric and its column space is a line
through s. For any d ∈ ℜ, P (ds) = ds, that is, the projection of any vector in
the direction of s is the same vector. Thus, P 2 = P .

3.9.2 Least Squares

In Section 3.6.3, we saw a method for solving the system Ax = b (A being an
m × n matrix), when a solution exists. Howevever, a solution may not exist,
especially when m > n, that is when the number of equations is greater than
the number of variables. In Section 3.6.3, we saw that the rref looks like [I 0]

T
,

where I is an n × n identity matrix. It could happen that the row reduction
yields a zero submatrix in the lower part of A, but the corresponding elements
in b are not zeroes. In other words, b may not be in the column space of A.
In such cases, we are often interested in finding a ‘best fit’ for the system; a
solution x̂ that satisfies Ax = b as well as possible.

We define the best fit in terms of a vector p which is the projection of b

onto C(A) and solve Ax̂ = p. We require that b − p is orthogonal to C(A),
which means

AT (b − Ax̂) = 0 (3.56)
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The vector e = b − Ax̂ is the error vector and is in N(AT ). The equation
(3.9.2) can be rewritten as

(AT A)x̂ = AT b (3.57)

A matrix that plays a key role in this problem is AT A. It is an n × n
symmetric matrix (since (AT A)T = AT A). The right null space N(AT A) is the
same as N(A)5. It naturally follows that the ranks of AT A and A are the same
(since, the sum of the rank and dimension of null space equal n in either case).
Thus, AT A is invertible exactly if N(A) has dimension 0, or equivalently, A is
a full column rank.

Theorem 36 If A is a full column rank matrix (that is, its columns are inde-
pendent), AT A is invertible.

Proof: We will show that the null space of AT A is {0}, which implies that the
square matrix AT A is full column (as well as row) rank is invertible. That is,
if AT Ax = 0, then x = 0. Note that if AT Ax = 0, then xT AT Ax = ||Ax|| = 0
which implies that Ax = 0. Since the columns of A are linearly independent,
its null space is 0 and therefore, x = 0. 2

Assuming that A is full column rank, the equation (3.57) can be rewritten
as

x̂ = (AT A)−1AT b. (3.58)

Therefore the expression for the projection p will be

p = A(AT A)−1AT b (3.59)

This expression is the n-dimensional equivalent of the one dimensional ex-
pression for projection in (3.9.1). The projection matrix in (3.59) is given by
P = A(AT A)−1AT . We will list the solution for some special cases:

• If A is an n×n square invertible matrix, its column space is the entire ℜn

and the projection matrix will turn out to be the identity matrix.

• Also, if b is in the column space C(A), then b = At for some t inℜn and
consequently, Pb = A(AT A)−1(AT A)t = At = b.

5The proof is left as an exercise.
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• On the other hand, if b is orthogonal to C(A), it will lie in N(AT ), and
therefore, AT b = 0, implying that p = 0.

Another equivalent way of looking at the best fit solution x̂ is a solution that
minimizes the square of the norm of the error vector

e(x̂) = ||Ax − b||2 (3.60)

Setting de(x̂)
dx = 0, we get the same expression for x̂ as in (3.9.2). The solution

in 3.9.2 is therefore often called the least squares solution. Thus, we saw two
views of finding a best fit; first was the view of projecting into the column space
while the second concerned itself with minimizing the norm squared of the error
vector.

We will take an example. Consider the data matrix A and the coefficient
matrix b as in (3.61).

Ax =






2 −1

−1 2

1 1






[

x̂1

x̂2

]

=






1

3

3




 (3.61)

The matrix A is full column rank and therefore AT A will be invertible. The
matrix AT A is given as

AT A =

[

6 −3

−3 6

]

Substituting the value of AT A in the system of equations (3.57), we get,

6x̂1 − 3x̂2 = 2 (3.62)

−3x̂1 + 6x̂2 = 8 (3.63)

The solution of which is, x1 = 4
5 , x2 = 26

15 .

3.9.3 Orthonormal Vectors

A collection of vectors q1,q2, . . . ,qn is said to be orthonormal iff the following
condition holds ∀ i, j:
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qT
i qj

{

0 if i 6= j

1 if i = j
(3.64)

A large part of numerical linear algebra is built around working with or-
thonormal matrices, since they do not overflow or underflow. Let Q be a matrix
comprising the columns q1 through qn. It can be easily shown that

QT Q = In×n

When Q is square, Q−1 = QT . Some examples of matrices with orthonormal
columns are:

Qrotation =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

, Qreflection =

[

cos(θ) sin(θ)

sin(θ) −cos(θ)

]

,

QHadamard =
1

2









1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1









, Qrect =






1 0

0 1

0 0




(3.65)

The matrix Qrotation when multiplied to a vector, rotates it by an angle θ,
whereas Qreflection reflects the vector at an angle of θ/2. These matrices present
standard varieties of linear transformation, but in general, premultiplication by
an m × n matrix transforms from an input space in ℜm to an input space in
ℜn. The matrix QHadamard is an orthonormal matrix consisting of only 1’s and
−1’s. Matrices of this form exist only for specific dimensions such as 2, 4, 8,
16, etc., and are called Hadamard matrices6. The matrix Qrect is an example
rectangular matrix whose columns are orthonormal.

Suppose a matrix Q has orthonormal columns. What happens when we
project any vector onto the column space of Q? Substituting A = Q in (3.59),
we get7:

p = Q(QT Q)−1QT b = QQT b (3.66)

Making the same substitution in (3.9.2),

x̂ = (AT Q)−1QT b = QT b (3.67)

6An exhaustive listing of different types of matrices can be found at http://en.wikipedia.
org/wiki/List_of_matrices.

7Note that QT Q = I. However, QQT = I only if Q is a square matrix.
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The ith component of x, is given by xi = qT
i b.

Let Q1 be one orthonormal basis and Q2 be another orthonormal basis for the
same space. Let A be the coefficient matrix for a set of points represented using
Q1 and B be the coefficient matrix for the same set of points represented using
Q2. Then Q1A = Q2B, which implies that B can be computed as B = QT

2 Q1A.
This gives us the formula for changing basis.

3.9.4 Gram-Schmidt Orthonormalization

The goal of the Gram-Schmidt orthonormalization process is to generate a
set of orthonormal vectors q1,q2, . . . ,qn, given a set of independent vectors
a1,a2, . . . ,an. The first step in this process is to generate a set of orthogonal
vectors t1, t2, . . . , tn from a1,a2, . . . ,an. To start with, t1 is chosen to be a1.
Next, the vector t2 is obtained by removing the projection of a2 on t1, from a2,
based on (3.9.1). That is,

t2 = a2 −
1

aT
1 a1

a1a
T
1 a2 (3.68)

This is carried out iteratively for i = 1, 2, . . . , n, using the expression below:

ti = ai −
1

tT
1 t1

t1t
T
1 ai −

1

tT
2 t2

t2t
T
2 ai − . . . − 1

tT
i−1ti−1

ti−1t
T
i−1ai (3.69)

This gives us the orthogonal vectors t1, t2, . . . , tn. Finally, the orthonormal
vectors q1,q2, . . . ,qn are obtained by the simple expression

qi =
1

||ti||
ti (3.70)

Let A be the matrix with columns a1,a2, . . . ,an and Q, the matrix with
columns q1,q2, . . . ,qn. It can be proved that C(V ) = C(Q), that is, the ma-
trices V and Q have the same column space. The vector ai can be expressed
as

ai =

n∑

k=1

(aT
i qk)qk (3.71)

The ith column of A is a linear combination of the columns of Q, with
the scalar coefficient aT

i qk for the kth column of Q. By the very construction
procedure of the Gram-Schmidt orthonormalization process, ai is orthogonal to
qk for all k > i. Therefore, (3.71) can be expressed more precisely as
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ai =
i∑

k=1

(aT
i qk)qk (3.72)

Therefore, matrix A can be decomposed into the product of Q with a upper
triangular matrix R; A = QR, with Rk,i = aT

i qk. Since aT
i qk = 0, ∀ k > i, we

can easily see that R is upper traingular.

3.9.5 Fourier and Wavelet Basis

The hermetian inner product of a complex vector x with another complex vector
y is xT y, and is also denoted by xHy. A complex matrix Q is called orthonormal

if Q
T
Q = I. Consider the complex number c = cos( 2π

n ) + icos( 2π
n ). Then,

cn = 1. The fourier matrix Fn is defined as

Fn =
1

n














1 1 . . . 1

1 c . . . cn−1

. . . . . .

1 ck−1 . . . c(k−1)(n−1)

. . . . . ,

1 cn−1 . . . c(n−1)(n−1)














(3.73)

The (hermetian) inner products of distinct columns Fn are 0, while the
inner product of a column with itself is 1. Therefore, the columns of Fn are
orthonormal and form a basis for ℜn. Consequently, the inverse of Fn is its

conjugate transpose F
T

n .
Further, F2k , k ≥ 1 can expressed as

F2k ==

[

I D

I −D

] [

F2k−1 02k−1

02k−1 F2k−1

]



















0 1 0 0 . . . 0 0

0 0 0 1 . . . 0 0

. . . . . . . . .

0 0 0 0 . . . 0 1

1 0 0 0 . . . 0 0

0 0 1 0 . . . 0 0

. . . . . . . . .

0 0 0 0 . . . 1 0



















︸ ︷︷ ︸

P

(3.74)
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where, D = diag(1, c, c2, . . . , c2k

) and 02k is a 2k ×2k matrix of 0’s. This factor-
ization, applied recursively, can reduce the time for computing F2k from O(n2)
to O(n log n). This is the idea behind the fast fourier transform algorithm.
Though the factorization discussed here, applies to only to powers of 2, there
exist FFT algorithms [?] for any number (including primes).

An advantage of representing a vector in ℜn (for example, a
√

n ×√
n sub-

block of an image matrix) using the fourier basis is that certain basis components
of the representation could be ignored to achieve minimally lossy compression
of matrices such as image matrices. Another orthogonal basis that is used for
minimally lossy matrix compression is the wavelet basis. A sample wavelet basis
matrix W for ℜ8 is

W =



















1 1 1 0 −1 0 0 0

1 1 1 0 −1 0 0 0

1 1 −1 0 0 −1 0 0

1 1 −1 0 0 −1 0 0

1 −1 0 1 0 0 −1 0

1 −1 0 1 0 0 −1 0

1 −1 0 −1 0 0 0 −1

1 −1 0 −1 0 0 0 −1



















(3.75)

The discrete wavelet transform can be computed efficiently using a fast wavelet
transform algorithm which is less computationally complex, taking O(n) time
as compared to O(nlogn) for the fast fourier transform.

3.10 Determinants

Every square matrix A has a real number associated with it, called its deter-
minant and it is denoted by det(A). In this sequel, we will often refer to the
following n × n matrix A:

A =














a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

ak1 ak2 . . . akn

. . . . . .

an1 an2 . . . ann














(3.76)

We will describe four fundamental properties of the determinant, which es-
sentially define the determinant.
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1. The determinant of the identity matrix I is 1. That is, det(I) = 1.

2. When two rows of A are permuted (c.f. Section 3.3.1), the sign of the de-
terminant changes. That is det (Perm(A, j, k)) = −det(A), where Perm(A, j, k)
returns a matrix formed by exchanging the jth and kth rows of A for any
1 ≤ j, k ≤ n.

3. If any row of A is scaled by t ∈ ℜ, the determinant also gets scaled by t.
Thus, if

S(A, k, t) =














a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

tak1 tak2 . . . takn

. . . . . .

an1 an2 . . . ann














(3.77)

then

det (S(A, k, t)) = t × det(A) (3.78)

The function S(A, k, t) returns a matrix eaxactly with all the entries of A,
except for the kth row, which is scaled by t ∈ ℜ.

4. The sum of the determinants of two n × n matrices, A and B, with all
(n − 1) rows the same, except for the kth row, 1 ≤ k ≤ n, equals the
determinant of an n×n matrix C that has the same n−1 rows from A/B,
but with the kth row being the sum of the kth rows of A and B. Thus, if

B =














a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

bk1 bk2 . . . bkn

. . . . . .

an1 an2 . . . ann














(3.79)

and,
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C =














a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

ak1 + bk1 ak2 + bk2 . . . akn + bkn

. . . . . ,

an1 an2 . . . ann














(3.80)

then

det(C) = det(A) + det(B)

Using these basic properties of determinants, we infer some derived prop-

erties:

1. If a matrix A has two equal rows, its determinant must be 0.

Proof: Let B be the matrix obtained by permuting the two equal rows of
A. By the second property of determinants, det(B) = −det(A). Since the
permuted rows are the same, B = A, which implies that det(B) = det(A).
The two equalities on determinants of A and B imply that det(A) = 0. 2

2. The determinant of A obtained by subtracting ρ ∈ ℜ times the jth row
from the kth row leaves the determinant unaltered. Therefore, if

E =














a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

ak1 − ρaj1 ak2 − ρaj2 . . . akn − ρajn

. . . . . .

an1 an2 . . . ann














(3.81)

we will have

det(E) = det(A)

Proof:
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det(E) = det(A) + det



























a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

−ρaj1 −ρaj2 . . . −ρajn

. . . . . .

an1 an2 . . . ann



























= det(A) − ρ × det



























a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .

aj1 aj2 . . . ajn

. . . . . .

an1 an2 . . . ann



























= det(A) (3.82)

The first step follows from the fourth fundamental property of determi-
nants, the second follows from the third fundamental property, while the
third step is a consequence of the first derived property of determinants.
2

This property shows that the row elimination steps discussed in Sec-
tion 3.3.1, leave the determinant unchanged.

3. If any kth row of A is 0, then det(A) = 0 Proof: Consider a matrix A′

that has the same rows as A for all 1 ≤ i ≤ n, except for the i = k. Let
the kth row of A′ be the same as its jth row, for some 1 ≤ j ≤ n, such
that j 6= k. Note that by the first derived property, det(A′) = 0. The
matrix A can be obtained from A′ by subtracting the jth row of A′ from
its kth row. By the second derived property, det(A) = det(A′). Thus,
det(A) = 0. Another simpler proof is that S(A, k, 0) = A which implies
that det(A) = det (S(A, k, 0)) = 0 × det(A) = 0 (by third fundamental
property of determinants). 2

4. The determinant of an upper triangular matrix U is the product of its
diagonal entries.

Proof: Row elimination operations can be performed on an upper train-
gular matrix U to yield a diagonal matrix D (c.f. Section 3.4.2 on Gauss-
Jordan elimination), while neither performing any row exchanges nor al-
tering the diagonal entries of U . By the second derived property of de-
terminants, det(D) = det(U). Using the first fundamental property of
determinants, det(D) can be proved to be the product of its diagonal
entries, which is also the product of the diagonal entries of U . 2

In fact, most mathematical softwares compute the determinant of a matrix
A by first reducing it to an upper triangular matrix U by row elimination
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on A (which preserves the determinant, by virtue of the second derived
property) and then compute the product of the diagonal entries (which
also happen to be the pivots) of U . If some α row exchanges are performed
during the reduction of A to U , the product of the diagonal entries, multi-
plied by (−1)α yields the determinant of A. As an example, consider the
2 × 2 matrix A2:

A2 =

[

a11 a12

a21 a22

]

(3.83)

Using the derived property (2), the matrix A
′

2 can proved to have same
determinant as A.

A
′

2 =

[

a11 a12

0 a22 − a21∗a12

a11

]

(3.84)

A
′

2 is an upper triangular matrix with det(A
′

2) given by

det(A
′

2) = a11a22 − a21 ∗ a12 (3.85)

Therefore,

det(A) = a11a22 − a21 ∗ a12 (3.86)

5. The determinant of a matrix A is 0 iff A is singular (or non-invertible).

Proof Sketch: We will consider the proof in two parts. When A is singular,
elimination, with some possible permutations, yields (as discussed in Sec-
tion 3.4.1) an upper traingular matrix with some diagonal (pivot) entries
that are 0s. Therefore, by the derived property (4), det(A) = 0. When
A is non-singular, elimination yields an upper triangular matrxi with no
zero entries. Consequently, we will have det(A) 6= 0. 2

6. The determinant of the product of two matrices A and B is the product
of their determinants8, i.e., det(AB) = det(A) × det(B).

8Recall that determinant does not have the linear additive property.
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A corollary of this property is that det(A−1) = 1
det(A) because det(A−1)det(A) =

det(I) = 1. Similarly, det(An) = (det(A))
n

and det(A1A2 . . . An) =
det(A1)det(A2) . . . det(An).

In this context, it will be appropriate to point out that determinants also
have relationship with volumes of solids. The determinant of matrix A in
(3.76), is the volume of an n−dimensional parallelotope, with corners at
(0, 0, . . . , 0), (a11, a12, . . . , a1n), . . ., (an1, an2, . . . , ann). The parallelotope
corresponding to In×n is an n−dimensional unit hypercube in n dimen-
sions and has a volume of 1. An orthonormal matrix Q represents a hy-
percube in n dimensions and has volume given by det(Q) =

√

det(I) = 1.

If Q is orthogonal (and not necessarily orthonormal), its volume is
n∏

i=1

si,

where si is the factor by which the ith row of Q should be scaled, so that
the row has unit norm. Determinants make easy the task of computing
areas of parallelotopes. If the parallelotope does not have any corner at
the origins, the coordinates of the corners can be computed relative any
one of the corners and the area can be computed using determinants.

7. The determinant of a square matrix A equals the determinant of its trans-
pose, i.e., det(A) = det(AT ).

Proof Sketch: We can decompose A as a LU , where L is a lower traingular
matrix and U is an upper traingular matrix. That is A = LU . Conse-
quently, AT = UT LT . By derived property (6), det(A) = det(L)det(U)
and det(AT ) = det(UT )det(LT ). Since the diagonal entries of LT and UT

are the same as the diagonal entries of L and U respectively, and since de-
rived property (4) states that the determinants of L, LT , U and UT are just
products of their respective diagonal entries, we have det(A) = det(AT ).
2

By virtue of this property, all the properties of determinants discussed so
far with respect to scaling or exchanging rows hold for similar manipula-
tions on the columns, since column operations on A are row operations on
AT .

3.10.1 Formula for determinant

In (3.86), we showed the formula for the determinant of a 2 × 2 matrix A2.
The formula can also be obtained by using the basic property (4), decomposing
det(A2) into the sum of determinants of 4 matrices, with one surviving element
per row. We will use the notation |.| instead of det ([.]) to denote the determinant
of a matrix.



3.10. DETERMINANTS 195

det(A2) =

∣
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

a11 0

a21 0

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

a11 0

0 a22

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

0 a12

a21 0

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

0 a12

0 a22

∣
∣
∣
∣
∣
= a11a22 − a12a21 (3.87)

Of these, there are only two nonzero terms; the terms with zero columns
or zero rows have 0 determinant. The determinant of a 3 × 3 matrix can be
similarly computed, by decomposing the determinant as the sum of 3×3×3 = 27
determinants. However, many of the determinants in the sum turn out to be 0,
either because of zero rows or zero columns. Each of the non-zero terms have
exactly one entry for each row and each column. Thus, the determinant of a
3 × 3 matrix can be expressed as

det(A3) =

∣
∣
∣
∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

a11 0 0

0 a22 0

0 0 a33

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

a11 0 0

0 0 a23

0 a32 0

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

0 a12 0

0 0 a23

a31 0 0

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

0 a12 0

a21 0 0

0 0 a33

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

0 0 a13

0 a22 0

a31 0 0

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

0 0 a13

a21 0 0

0 a32 0

∣
∣
∣
∣
∣
∣
∣

= a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33 − a13a22a31 + a13a21a32

= a11 (a22a33 − a23a32) − a12 (a21a33 − a23a31) + a13 (a21a32 − a22a31)

= a11

∣
∣
∣
∣
∣

a22 a23

a32 a33

∣
∣
∣
∣
∣

︸ ︷︷ ︸

cofactor of a11

+a12 (−1)

∣
∣
∣
∣
∣

a21 a23

a31 a33

∣
∣
∣
∣
∣

︸ ︷︷ ︸

minor of a12

︸ ︷︷ ︸

cofactor of a12

+a13

∣
∣
∣
∣
∣

a21 a22

a31 a32

∣
∣
∣
∣
∣

︸ ︷︷ ︸

cofactor of a13

(3.88)

In (3.88), the determinant of A3 is decomposed into the sum of signed deter-
minants of smaller 2×2 matrices called co-factors, each scaled by a correspond-
ing factor. The sign of the co-factors depend on the number of row permutations
required to get the matrix in a diagonal form; the sign is (−1)num perms which
happens to be (−1)i+j . In general, for an n × n matrix A, the minor of a term
aij is the determinant of an (n− 1)× (n− 1) sub-matrix of A that has the row
i and column j removed, while its co-factor is the minor multiplied by (−1)i+j .
The minor for aij is denoted by Mij and its co-factor by Cij . Minors of the
form Mii are called principal minors.



196 CHAPTER 3. LINEAR ALGEBRA

The general formula for the determinant of an n × n matrix contains n!
terms, corresponding to all permutations of the choice of the column index for
the non-zero entries corresponding to each row index. That is,

det(A) =
∑

(p1,p2,...,pn)∈Perm(1,2,...,n)

a(1,p1)a(2,p2) . . . a(n,pn) (3.89)

In terms of co-factors, the formula for determinant is

det(A) =
n∑

k=1

aikCik (3.90)

for any 1 ≤ i ≤ n.

3.10.2 Formula for Inverse

Let A be an n×n invertible matrix. In Section 3.4.1, we saw an elegant algorithm
for computing A−1. In (3.91), we present a closed form expression for A−1 in
terms of the co-factors of A, even though the expression is very expensive to
compute.

A−1 =
1

det(A)














C11 C12 . . . C1n

C21 C22 . . . C2n

. . . . . .

Ck1 Ck2 . . . Ckn

. . . . . .

Cn1 Cn2 . . . Cnn














T

=
1

det(A)
CT (3.91)

We denote the matrix in (3.91) consisting of the co-factors of A, by C. It can
be easily verified that the expression in (3.91) is indeed A−1.
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AA−1 =
1

det(A)
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
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

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
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
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
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j=1

a1jC1j
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j=1

a1jC2j . . .
n∑

j=1

a1jCnj

n∑

j=1

a2jC1j

n∑

j=1

a2jC2j . . .
n∑

j=1

a2jCnj

. . . . . .

. .
n∑

j=1

aijCij .

. . . . . .
n∑

j=1

anjC1j

n∑

j=1

anjC2j . . .
n∑

j=1

anjCnj




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

















=
1

det(A)














det(A) 0 . . . 0

0 det(A) . . . 0

. . . . . .

. . det(A) .

. . . . . .

0 0 . . . det(A)














= In×n(3.92)

Recall from (3.90) that det(A) =
n∑

j=1

aijCij for any 1 ≤ i ≤ n. However,

n∑

j=1

aijCkj = 0, if i 6= k. This is because, for i 6= k,

n∑

j=1

aijCkj is the determinant

of a matrix that has identical ith and kth rows and hence equals 0, by the derived
property (1) for matrices.

The formula (3.91) for matrix inverse (if it exists) can be substituted in
(3.4.1) to yield the Cramer’s rule for solving the system Ax = b. The Cramer’s
rule is:
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x = A−1b =
1

det(A)
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















n∑

j=1

bjC1j

n∑

j=1

bjC2j

.

.
n∑

j=1

bjCnj



















=
1

det(A)











det(B1)

det(B2)

.

.

det(Bn)











(3.93)

Bi is a matrix obtained by replacing the ith column of A with the vector b

and keeping all other columns unaltered. This rule is never used in practical
computations; the explicit formula only helps in analysis or derivation.

3.11 Eigenvalues and Eigenvectors

Let A be an n × n square matrix. Consider the function f : ℜn → ℜn, defined
as f(x) = Ax. Suppose we are interested in vectors x, for which, f returns a
vector in the same direction as x. Such vectors are called eigenvectors of A.

Eigenvector: Vector x ∈ ℜn is called an eigenvector of an n× n matrix A, iff

Ax = λx, ∃ λ ∈ ℜ (3.94)

The scalar λ is called an eigenvalue of A, corresponding to the eigenvec-
tor x.

We will consider some special examples of eigenvectors and eigenvalues.

• For the simple case of λ = 0, any x ∈ N(A) is an eigenvalue of A. Thus,
if A is singular, so that N(A) 6= {}, λ = 0 and x ∈ N(A) are a valid
eigenvalue-eigenvector pair.

• If A happens to be a projection matrix, (c.f., Section 3.9.1), i.e.,
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A = ssT 1

sT s

for some s ∈ ℜn. Recall that, Ax = x for any x in the column space of
A. Therefore, x = ρs is an eigenvector of A for any ρ ∈ ℜ, with 1 as the
corresponding eigenvalue. As discussed above, any x ∈ N(A) is also an
eigenvector of A with a corresponding eigenvalue of 0. However, for any
other x /∈ C(A), Ax = cs and therefore x is not an eigenvector.

Consider the permutation matrix P23 in (3.95):

P23 =






1 0 0

0 0 1

0 1 0




 (3.95)

By inspection, we find that P23 has atleast three eigenvectors, viz., x1 =
[1 0 0] with eigenvalue λ1 = 1, x2 = [0 1 1] with eigenvalue λ2 = 1,
and x3 = [0 − 1 1] with eigenvalue λ3 = −1. Does P23 have any more
eigenvectors? The answer is no. It turns out that any n× n matrix has exactly
n orthonormal eigenvectors. Moreover, the trace of a matrix (i.e., the sum of
its diagonal entries) always equals the sum of the eigenvalues corresponding to
the orthonormal eigenvectors.

tr(A) =
n∑

i=1

λi

Thus, if we knew n − 1 eigenvalues of a matrix, we could easily determine
its nth eigenvalue. We will defer this discussion to a later part of this chapter.

3.11.1 Solving for Eigenvalues

The equation (3.94) defining the criterion for an eigenvalue x can we re-written
as in (3.96).

(A − λI)x = 0 (3.96)

For a solution x to exist, A − λI must be singular (i.e., non-invertible) and x

must lie in the null space N(A−λI). Therefore, det(A−λI) = 0 is a necessary
and sufficient condition for λ to be an eigenvalue. Once the eigenvalue λ is
determined, the corresponding eigenvectors can be determined by computing
N(A − λI), a procedure that has been already discussed in Section 3.5.2. We
will therefore first discuss the procedure for computing the solution to
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det(A − λI) = 0 (3.97)

As an example, when we apply the criterion in (3.97), to the matrix P23, we
get solutions as shown in (3.98):

det(P23 − λI) = (1 − λ)λ2 = 0

⇒ λ = 1 or λ = −1 (3.98)

Substituting these two values into the system (A − λI)x = 0, we get one
matrix for each possible value of λ. It can be verified that the basis for the null
space of (A−λI) obtained using the elimination process discussed in Section 3.6
(particularly, equation 3.27) is indeed [1 0 0]T and [0 1 1]T for eigenvalue
λ1 = 1, and [0 − 1 1] for eigenvalue λ3 = −1.

3.11.2 Some Properties of Eigenvalues and Eigenvectors

How are the eigenvectors and eigenvalues of a matrix affected when transforma-
tions are performed on the matrix? Below, we list some properties of eigenvalues
with respect to matrix transformations.

1. If Ax = λx, then (A + kI)x = (λ + k)x. That is, the eigenvalues of
A + kI are the eigenvalues of A, incremented by k, without any change in
corresponding eigenvectors.

2. Consider the matrix R in (3.99):

R =

[

0 3

−2 0

]

(3.99)

The eigenvalues of R can be found as follows: det(R − λI) = λ2 + 6 =
0 ⇒ λ = ±

√
6i. The eigenvalues of a matrix could be complex numbers

as this example illustrates. In fact, eigenvalues always appear as complex
conjugates, as in this example.

3. Let λ be an eigenvalue of A and x its corresponding eigenvector, i.e.,
Ax = λx. It can be shown that the complex conjugates λ and x also form
an eigenvalue-eigenvector pair for A. Thus, Ax = λx. If A happens to
have only real entries, then, Ax = λx.

4. The eigenvalues of upper and lower traingular matrices can be computed
very easily. By derived property (4) of determinants, the determinant of
an upper traingular matrix is the product of its diagonal entries. Let U be
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an n× n upper traingular matrix, with uij being the entry corresponding
to the ith row and jth column. First we note that U − λI will also be
upper traingular, since I is upper traingular and since the sum of upper
traingular matrices is also upper traingular (the space of upper traingular
matrices is a vector space, as shown in Section 3.8). Now, det(U − λI) =
n∏

i=1

(uii −λ) = 0. The eigenvalues correspond to solutions of this equation;

they are λi = uii, 1 ≤ i ≤ n. The eigenvectors can be computed by solving
the systems (U −λiI)xi = 0 by simple back-subtitutions, as illustrated in
Section 3.3.1.

5. If x is an eigenvector of A with a corresponding eigenvalue λ, we have Ax =
λx. Therefore, A2x = A(Ax) = λAx = λ2x. Thus, x is an eigenvector of
A2 as well, with a corresponding eigenvalue of λ2. This statement can be
generalized: If x is an eigenvector of A with a corresponding eigenvalue
λ, x is also an eigenvector of Ak, with corresponding eigenvector λk.

6. The eigenvectors v1,v2, . . . ,vn of a matrix A are linearly independent
if all its eigenvalues λ1, λ2, . . . , λn are different. This can be proved by
contradiction9 However, the eigenvectors, could be independent even if
eigenvalues are repeated; but it is not always true. For instance, any
traingular matrix having some identical diagonal elements (as in the case
of the identity matrix) has linearly independent eigenvectors, even though
some eigenvalues are identical.

7. In many engineering problems, we are faced with the system of equations

bi+1 = Abi, ∀ i ≥ 0 (3.100)

That is, bi = Aib0. If A has n linearly independent eigenvectors (so that
they span ℜn), these systems can be solved efficiently, by expressing b0

as a linear combination of the eigenvectors v1,v2, . . . ,vn of A.

b0 =
n∑

k=1

ckvk

where, ck ∈ ℜ, ∀ 1 ≤ k ≤ n. Consequently, any bi, i ≥ 0 can be computed
efficiently as

bi =
n∑

i=k

λi
kckvk (3.101)

9Exercise.
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8. Consider the fibonacci sequence fi+2 = fi + fi+1i ≥ 0, with f0 = 0 and
f1 = 1. The recurrance relation can be written as a linear system (3.102).

[

fi+2

fi+1

]

︸ ︷︷ ︸

bi+1

=

[

1 1

1 0

]

︸ ︷︷ ︸

A

=

[

fi+1

fi

]

︸ ︷︷ ︸

bi

(3.102)

Note that b0 = [0 1]T . The system of equations (3.102) is of the same form
bi+1 = Abi, ∀ 0 ≤ i ≤ n discussed above and therefore, the expression
for bi can be derived using (3.101), after computing values of λ1, v1,
c1 and λ2, v2 and c2. The values of λ1 = 1

2 (1 +
√

5) = 1.6180 and

λ2 = 1
2 (1 −

√
5) = −0.6180 can be computed by solving det(A − λI) = 0.

Substituting these values of λ, eigenvectors v1 and v2 can be obtained as
in (3.103).

v1 =

[

−0.8507

−0.5257

]

,v2 =

[

0.5257

−0.8507

]

(3.103)

A closed form expression is bi = c1(1.6180)i[−0.8507 −0.525]T−c2(0.6180)i[0.525 −
0.8507]T .

Another application of this general technique is in differential equations.
Let us say we are given the differential equation x′′ +a1x

′ +a2x = 0. This
equation can be equivalently expressed as

y′ =

[

−a1 −a2

1 0

]

︸ ︷︷ ︸

A

y (3.104)

where, y = [x′ x]T . The nth derivative of x can expressed in a closed
form by determining the eigenvalues and eigenvectors of A.

9. If λ is an eigenvalue of a matrix A, then it is also an eigenvalue of AT .
This is because det(A − λI) = det

(
(A − λI)T

)
= det(AT − λI). The

eigenvectors for the same eigenvalues could however differ between A and
AT .

10. Another general property of any square matrix is that the sum of its
eigenvalues equals its trace. Additionally, the product of its eigenvalues
equals its determinant. Consequently, for any 2× 2 matrix, if the trace is
negative and the determinant positive, the real parts of both its eigenvalues
must be negative.
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11. A Markov matrix10 M is an n × n matrix such that (1) all its entries are
≥ 0 and (2) the sum of all entries in each column is 1. An example Markov
matrix M3 is

M =









0.1 0.25 0.3 0.35

0.2 0.25 0.3 0.05

0.3 0.25 0.4 0.15

0.4 0.25 0 0.45









(3.105)

A very special property of markov matrices is that exactly one eigenvalue
of any markov matrix equals 1 and the rest of its eigenvalues are strictly
less than 0. For example, the M3 has following eigenvalues: 1.0000,−0.2168, 0.3428, 0.0740.
The first part of this property can be proved as follows. The matrix
M −I is singular, because the sum of the rows is a zero vector. Therefore,
det(M − I) = 0. Thus, λ = 1 must be an eigenvalue of M .

In probabilistic models, we often have systems of the form pi+1 = Api, ∀ i ≥
0, similar to equation (3.100). A closed form solution can be obtained us-
ing the idea of (3.101)

pi =

n∑

i=k

λi
kckvk

where, v1,v2, . . . ,vn are the eigenvectors of M and its eigenvalues are
λ1, λ2, . . . , λn. If λ1 = 1, then λi < 1,∀ 2 ≤ i ≤ n. Hence, as i → ∞,
pi → c1v1.

12. If A is an n × n matrix with real valued entries and is symmetric, i.e.,
A = AT , then, its eigenvalues are real. Further, the eigenvectors of a
symmetric matrix can be chosen to be orthogonal. In mathematics, this
is called the spectral theeorem while in mechanics it is called the principal
axis theorem.

Theorem 37 If A is symmetric then (1) all its eigenvalues are real and
(2) there exists and orthonormal basis Q of A, consisting of its eigenvec-
tors.

Proof for part (1): Let λ be an eigenvalue of A and x be its corresponding
eigenvector; Ax = λx. Then, premultiplying both sides by xT , we get

xT Ax = λxT x (3.106)

10The matrix entries of a markov entries represent probabilities of transitions
within/between states.
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As mentioned earlier, the complex conjugates λ and x also form an eigenvalue-
eigenvector pair for a real matrix A; Ax = λx. This implies that xT AT =
xT A = λxT and therefore,

xT Ax = λxT x (3.107)

We note that the left hand sides of (3.106) and (3.107) are the same.
Equating the right hand sides of these equations,

λxT x = λxT x (3.108)

xT x is always real and non-negative. It is 0 only if x = 0. Therefore,
λ = λ ⇒ λ ∈ ℜ. 2

13. If A is a real symmetric matrix, the number of positive pivots and number
of negative pivots are respectively equal to the number of positive and
negative eigenvalues.

14. Two n×n matrices A and B are called similar if there exists an invertible
n×n matrix M such that M−1BM = A. A property of similar matrices is
that they have same determinants, since det(A) = det(M−1)det(B)det(M) =

1
det(M)det(B)det(M) = det(B). A more fundamental property is that sim-

ilar matrices have the same eigenvalues, though they could differ in their
eigenvectors.

Theorem 38 If A and B are similar matrices, they have the same eigen-
values.

Proof: Let λ be an eigenvalue of A. Since A and B are similar, there
exists an invertible matrix M such that, M−1BM = A. Ax = λx ⇒
(MAM−1)Mx = λMx ⇒ B(Mx) = λ(Mx), that is, if λ is an eigenvalue
of A and x is the corresponding eigenvector, then λ is an eigenvalue of B
and Mx is its corresponding eigenvector.

Similarly, Bx = λx ⇒ (M−1AM)M−1x = λM−1x ⇒ B(M−1x) =
λ(M−1x), that is, if λ is an eigenvalue of B and x is the corresponding
eigenvector, then λ is an eigenvalue of A and M−1x is its corresponding
eigenvector. 2

At this point, we state the observation that matrices of the form kIn×n are
only similar to themselves, since, for any invertible matrix M , M−1(kIn×n)M =
kIn×n.
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3.11.3 Matrix Factorization using Eigenvectors

Let A be an n×n matrix, with n eigenvectors v1,v2, . . . ,vn and corresponding
eigenvalues λ1, λ2, . . . , λ1. Let V be a matrix with the eigenvectors as columns.
Postmultiplying A by V , we get

AV = [λ1v1 λ2v2 . . . λnvn] = [v1 v2 . . . vn]














λ1 0 . . . 0

0 λ2 . . . 0

. . . . . .

. . λk .

. . . . . .

0 0 . . . λn














︸ ︷︷ ︸

Eigenvalue matrix Λ

= V Λ

that is, AV = V Λ. The diagonal matrix Λ consists of eigenvalues along its
diagonal and is called the eigenvalue matrix.

If the eigenvectors are linearly independent, V is invertible. Premultiplying
AV by V −1,

V −1AV = Λ

Another equivalent equation is

A = V ΛV −1 (3.109)

This procedure of premultiplying a matrix by the inverse of its eigenvector
matrix and post-multipyling it by the eigenvector matrix to obtain a diago-
nal matrix of its eigenvalues, is called diagonalization. Diagonalization can be
generalized to powers of k:

Ak = V ΛkV −1

Thus, eigenvalues and eigenvectors provide a great way to understand the powers
of a matrix. Further, if |λi| < 1, Λk → 0, as k → ∞. Therefore, if |λi| < 1,

Ak → 0, as k → ∞. As another example, if we define eρA =

∞∑

n=0

1

n!
(Aρ)n,

where ρ ∈ ℜ, then using the above property, it can be shown that eρA =
V eρΛV −1 = V diag(eρλ1 , eρλ2 , . . . , eρλn)V −1, where diag(c1, c2, . . . , cn) returns
an n × n diagonal matrix with the ith diagonal entry as ci.

If A is symmetric, the eigenvector matrix V could be chosen to be a matrix
of orthonormal vectors, denoted by Q. Note that Q−1 = QT . Thus, for a
symmetric A, the equation (3.109) can be re-written as:

A = QΛQT =
n∑

i=1

λi(qiq
T
i ) (3.110)
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From Section 3.9.1, we recall that (qiq
T
i ) is a projection matrix. Moreover, if

i 6= j, (qiq
T
i ) is orthogonal to (qjq

T
j ). This gives us another perspective of

symmetric matrices - as a linear combination of orthogonal projection matrices.
Also, since Q is of rank 1 and invertible, we can infer that A is similar to Λ.
The diagonal matrix Λ can be thought of as a canonical form for the family
of matrices similar to A. However, if A is not a full rank matrix, there exists
an ‘almost diagonal form’, called the Jordan form [?], which is similar to A,
containing the eigenvalues of A along its diagonal, with the only other non-zero
entries being along the super-diagonal.

One more illustration of the utility of matrix factorization using eigenvec-
tors is the interpretation of level sets involving the quadratic form xT Ax =
xT QΛQT x for a symmetric matrix A. The level set of a real-valued function f
of x ∈ ℜn is a set of the form {x|f(x) = c}, where c is a constant. Using the
eigenvalue factorization of matrices, the level set {x|xT QΛQT x = c} can be in-
terpreted as an ellipsoid in n dimensions, with each eigenvector-eigenvalue pair
specifying the direction and the length respectively of an axis of the ellipsoid.

3.12 Positive Definite Matrices

Positive definite matrix: A positive definite (p.d.) matrix is a symmetric
matrix with all positive eigenvalues. That M is a p.d. matrix is also
denoted by M > 0.

By virtue of property of symmetric matrices, all the pivots in the rref of a p.d.
matrix are also positive. Since the determinant of matrix equals the product of
its eigenvalues, the determinant of a p.d. matrix is also positive; however, it is
not necessary that a matrix with positive determinant is also p.d.

A matrix is called positive semi-definite (p.s.d.), if all its eigenvalues are
non-negative. That M is p.s.d. is also denoted by M ≥ 0.

3.12.1 Equivalent Conditions

We will list down some necessary and sufficient conditions for a matrix A to be
positive definite or positive semi-definite:

1. A matrix A is p.d. iff all its n leading principal minors (c.f. Section 3.10.1)
are positive. As an example, if A is a 2× 2 matrix, we must have a11 > 0
and a11a22 − a12a21 > 0 in order for A to be p.d. On the other hand, if
all its principal minors are non-negative, the matrix is p.s.d.

2. Another equivalent definition for positive definiteness is: A matrix A is
p.d. iff, ∀ x 6= 0, xT Ax > 0. This condition can be rewritten as ∀ x 6=

0,

n∑

i=1

n∑

j=1

aijxixj > 0. If ∀ x 6= 0, xT Ax ≥ 0, A is p.s.d.
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3. The condition ∀ x 6= 0,
n∑

i=1

n∑

j=1

aijxixj > 0 involves a quadratic expres-

sion. The expression is guaranteed to be greater than 0 ∀ x 6= 0 iff it can

be expressed as
n∑

i=1

λi





i−1∑

j=1

βijxij + xii





2

, where λi ≥ 0. This is possible

iff A can be expressed as LDLT , where, L is a lower traingular matrix with
1 in each diagonal entry and D is a diagonal matrix of all positive diago-
nal entries. Or equivalently, it should be possible to factorize A as RRT ,
where R = LD1/2 is a lower traingular matrix. Note that any symmetric
matrix A can be expressed as LDLT , where L is a lower traingular matrix
with 1 in each diagonal entry and D is a diagonal matrix; positive definite-
ness has only an additional requirement that the diagonal entries of D be
positive. This gives another equivalent condition for positive definiteness:
Matrix A is p.d. if and only if, A can be uniquely factored as A = RRT ,
where R is a lower traingular matrix with positive diagonal entries. This
factorization of a p.d. matrix is reffered to as Cholesky factorization.

Recall that Guass elimination on a matrix A yields its factorization as
A = LU and the diagonal entries of L are pivots. Therefore, if A is
symmetric matrix such that Guass elimination on it yields positive pivots,
A is positive definite.

To illustrate the equivalence of the above definitions of positive definiteness,
consider the matrix P below:

P =









1 1 2 1

1 10 14 4

2 14 21 9

1 4 9 20









(3.111)

The matrix is positive definite and this can be proved by showing any of the
following properties:

1. All the eigenvalues of P , viz., λ1 = 0.1644, λ2 = 0.9371, λ3 = 14.4091, λ4 =
36.4893 are positive. and therefore P > 0.

2. The principal minors of P are 1, 9, 9 and 81. All the four principal minors
are positive and thus P > 0.

3. Matrix P can be factorized as LLT , where
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L =









1 0 0 0

1 3 0 0

2 4 1 0

1 1 3 3









(3.112)

Since L is lower traingular and since all its diagonal entries are positive, P > 0.

3.12.2 Some properties

We will list some properties of positive definite matrices, using an appropriate
definition of positive definiteness as required.

1. If matrices A > 0 and B > 0, then A + B > 0. This follows from the
fact that ∀ x 6= 0, xT Ax > 0 and ∀ x 6= 0, xT Bx > 0 implies that
∀ x 6= 0, xT (A + B)x > 0. Similarly, AB > 0 and for any c > 0, cA > 0.

2. If A > 0, then ∀ x 6= 0, xT Ax > 0 implies (xT Ax)T = xT AT x > 0, that
is, AT > 0.

3. Let A be an m×n matrix. Recall from Section 3.9.2, the important matrix
AT A which happened to be an n × n matrix. If A is full column rank,
the only vector in its null space is 0. Note that ∀ x 6= 0, xT AT Ax =
||Ax||2 > 0. Thus, AT A is always p.d. if A is non-singular.

4. Every p.d. matrix is invertible and its inverse is also p.d. That is, if A > 0
then A−1 exists and A−1 > 0.

5. If A > 0, the diagonal entries of A are real and positive. Consequently,
the trace tr(A) is also positive.

Testing for positive definiteness of a matrix arises in several applications,
including optimization. Determining the local minimum of a function f(x), x ∈
D, D ⊆ ℜk involves determining points x̂ at which ∇f(x̂) = 0 and ∇2f(x̂) > 0
(positive curvature at x̂).

3.13 Singular Value Decomposition

In Section 3.11.3, we discussed that a full rank symmetric matrix can be factor-
ized into QΛQT , where, Q is an orthonormal matrix and Λ is a diagonal matrix.
This factorization can be extended to any matrix and it is called Singular Value
Decomposition, abbreviated as SVD. The singular value decomposition of any
m × n matrix A is factorization of A as UΣV T , where Σ is a diagonal matrix
and U and V are orthonormal matrices.

We will contruct the matrices U and V as follows. Let r be the rank of A
and let
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• u1,u2, . . . ,ur be an orthonormal basis for the column space of A.

• vr+1,vr+2, . . . ,vn be an orthonormal basis for the null space of A.

• ur+1,ur+2, . . . ,um be an orthonormal basis for the null space of AT .

• v1,v2, . . . ,vr be such that xi = AT ui and vi = 1
||xi||

xi.

The relationship between ui and vi is therefore AT ui = σiivi, with

σii =

{

||AT ui|| if i ≤ r

0 if i > r
(3.113)

This system of equations can written in matrix form as

AT U = V Σ (3.114)

where, u1,u2, . . . ,um are the columns of U and v1,v2, . . . ,vn are the columns
of V . Σ is an n × n diagonal matrix with its ijth entry given by σij , such that

σij =







0 if i 6= j

||AT ui|| if i = j and i ≤ r

0 if i = j and i > r

(3.115)

It can be shown that v1,v2, . . . ,vr are orthonormal and form a basis for the
row space of A. Theorem 34 stated that the row space C(AT ) and right null
space N(A) are orthogonal complements. Similarly, the column space C(A) and
left null space N(AT ) are orthogonal complements. Therefore, u1,u2, . . . ,um

is an orthonormal basis for ℜm, while v1,v1, . . . ,vn is an orthonormal basis for
ℜn.

Since U−1 = UT , we can rewrite (3.114) as

A = UΣV T (3.116)

Furthermore, AAT = UΣ2UT and AT A = V Σ2V T , which are spectral decom-
positions, implying that the columns of U and V are eigenvectors of AAT and
AT A respectively and the diagonal entries of Σ are square roots of the eigenval-
ues of AAT (or equivalently AT A).

As an example, if P is the full rank, symmetric matrix in (3.111), the ma-
trices U , Σ and V are
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U =









−165/2423 76/4167 637/688 −892/2403

−467/1012 373/992 −577/1726 −757/1036

−367/508 48/133 318/1909 869/1536

−172/337 −407/477 −329/5765 −211/2328









(3.117)

Σ =









1715/47 0 0 0

0 11657/809 0 0

0 0 477/509 0

0 0 0 265/1612









(3.118)

V =









−165/2423 76/4167 637/688 −892/2403

−467/1012 373/992 −577/1726 −757/1036

−367/508 48/133 318/1909 869/1536

−172/337 −407/477 −329/5765 −211/2328









(3.119)

On the other hand, if P is a singular matrix of rank 2, given by

P =






1 3 1

2 3 1

3 6 2




 (3.120)

then P can be decomposed into the following matrices:

U =






−1301/3398 794/1101 −780/1351

−450/1039 −715/1033 −780/1351

−337/413 203/6999 780/1351




 (3.121)

Σ =






2565/299 0 0

0 687/1076 0

0 0 0




 (3.122)

V =






−799/1854 −647/717 0

−1814/2119 453/1108 −228/721

−567/1987 151/1108 684/721




 (3.123)

Notice that, since P is singular and of rank 2, its null space has dimension
1 and one of its eigenvalues is 0.
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3.13.1 Pseudoinverse

The SVD of a matrix that is not full rank (such as P in (3.120)) can be used to
compute its so-called Moore-Penrose pseudoinverse.

Pseudoinverse: The pseudoinverse A+ of an m×n matrix A is a unique n×m
matrix, satisfying all the following criteria:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)
T

= AA+

4. (A+A)
T

= A+A

The pseudoinverse of a non-singular square matrix is the same as its inverse.
A pseudoinverse of a rectangular matrix of full column rank is the left inverse,
while a pseudoinverse of a rectangular matrix of full row rank is the right inverse
(c.f. Section 3.4.2).

Consider an n × n diagonal matrix Σ having rank k.

Σ =





















σ11 0 . . . 0 0 . . . 0

0 σ22 . . . 0 0 . . . 0

. . . . . . . . . . .

. . . . . . . . . . .

0 0 . . . σkk 0 . . . 0

0 0 . . . 0 0 . . . 0

. . . . . . . . . . .

. . . . . . . . . . .

0 0 . . . 0 0 . . . 0





















(3.124)

The pseudoinverse Σ+ of Σ is:

Σ+ =





















1
σ11

0 . . . 0 0 . . . 0

0 1
σ22

. . . 0 0 . . . 0

. . . . . . . . . . .

. . . . . . . . . . .

0 0 . . . 1
σkk

0 . . . 0

0 0 . . . 0 0 . . . 0

. . . . . . . . . . .

. . . . . . . . . . .

0 0 . . . 0 0 . . . 0





















(3.125)
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The pseudoinverse P+ of any non full rank matrix P can be computed
using its singular value decomposition UΣV T and the pseudoinverse Σ+ of the
diagonal matrix Σ as:

P+ = V Σ+U (3.126)


