

Jayadeva\current papers\fsmo\l2smo1.doc Page 1 of 19

Fast Algorithms for Least Squares SVMs
1Sachindra Joshi, 1Jayadeva, 1Ganesh Ramakrishnan, and 2Suresh Chandra

1IBM India Research Laboratory
2Department of Mathematics, Indian Institute of Technology, Hauz Khas,

New Delhi - 110016. INDIA.

Abstract

Least Squares SVMs include the well known LSSVM and the Proximal SVM, which

are normally trained by solving a system of linear equations, or through a matrix
inversion. We examine a variant in which the objective function is similar to the

Proximal SVM, while the constraints are those of LS-SVMs; we term this as a
Relaxed Least Squares SVM (RLSSVM). The RLSSVM yields a simple dual
formulation, for which we propose a fast sequential update algorithm; the
update rules is about two to four times faster than conventional approaches on

large datasets, while yielding similar error rates. Finally, we show that for a given
LSSVM with any specified kernel matrix, there is an equivalent Relaxed SVM with
the same solution. This opens up the possibility of developing alternate ways of
solving the very popular LSSVM.

Keywords: Support Vector Machines, Classification, Regression, Function

Approximation, Least Squares, Machine Learning, Classification, Numerical Methods,
Linear Algebra

I. Introduction

The literature on neural networks is replete with powerful and efficient techniques for
pattern classification and function approximation. The ideas on learning complexity, first
investigated in the context of multilayer neural networks have now been encompassed
in the area of Support Vector Machines (SVMs). SVMs have emerged in recent years as
a powerful paradigm for pattern classification and regression [1-4]. SVMs emerged from
research in statistical learning theory on how to regulate generalization in learning, and

the tradeoff between structural complexity and empirical risk.

The classical maximum margin SVM classifier aims to minimize an upper bound on the
generalization error through maximizing the margin between two disjoint half planes [1,

4]. This basically involves solving a quadratic programming problem that could be
prohibitive on large data sets. To overcome this problem, Suykens and Vandewalle

proposed the “least square SVM” (LSSVM) formulation [5]. The formulation considers
equality constraints and adds an extra term to the cost function. As a result, the
solution follows from directly solving a set of linear equations. The resulting system of
equations is not positive definite, making it more difficult to solve. Some pre-

conditioning is performed to the system of linear equations, so that more efficient
numerical optimization methods could be applied. Therefore, the solution of the training
procedure for LSSVM can be found by solving two sets of linear equations.

Jayadeva\current papers\fsmo\l2smo1.doc Page 2 of 19

In this paper, we propose a new formulation for SVM called Relaxed LSSVM. The
formulation is a variant of LSSVM and proximal SVM [6]. Solving relaxed LSSVM involves
solving a system of linear equation that is guaranteed to be positive definite. Therefore,

the solution of the training procedure for relaxed LSSVM can be obtained by solving a
single system of linear equation in contrast to solving two systems of linear equations
as required for LSSVM. This yields a speed up by a factor of 2-3 times over LSSVM on
standard data sets.

Given a set of M patterns xk
 , where xk

 =(,1

k
x ,2

k
x …, k

Nx)T, with corresponding labels xk
 ∈

{-1, +1}, the LS-SVM determines a separating surface of the form w
Tφ(x) + b = 0 by

solving a problem of the form

qq
C

ww TT

wbq 22

1
 Minimize

,,
+ (1)

 subject to

()[] MiqbPwy ii

T

i ,1,2,... 1, ==++φ (2)

where 0>C is a parameter.

Here, φ is a function that maps patterns from the input space into a higher
dimensional feature space; qk is the error variable associated with the k-th constraint.
Proximal SVMs, proposed by Fung and Mangasarian in 2001 [6], minimize the objective
function

qq
C

bww
TT

wbq 22

1

2

1
 Minimize

2

,,
++ (3)

subject to the constraint

() .eqebDwKKD
T =++ (4)

Here, e is a vector of ones of appropriate dimension; I is the identity matrix; and D is a
diagonal matrix whose entries are the class labels (±1) of the patterns. The notation
has been changed from that in [5], [6] to make it consistent with the rest of this paper.
Note that the error variables qi are not constrained to be non-negative, i.e. they can be
of either sign. The solution to LS-SVM involves the solution of a system of linear
equations, while proximal SVMs involve a matrix inversion.

The Relaxed LSSVM formulation has an objective function similar to the Proximal SVM
and has LSSVM-type constraints. We derive simple update rules for each of them, which
yield a speedup by factors of upto 2-3 times on a set of benchmark datasets, while

providing similar error rates as the conventional formulations. While considerable
research has been done on working set and decomposition methods for solving the

classical L1 norm SVM [7]-[15], there have been fewer, more recent attempts at
developing SMO type fast update algorithms for Least Squares SVMs [16]-[17]. The

update rules we propose in this work are motivated by recent work on the IDSA
algorithm [18] for the L1 norm SVM. Since the matrix in LSSVM is not positive definite, it

has to be pre-conditioned [26]. On the other hand, Relaxed LSSVM yields a matrix in
the quadratic objective function that is guaranteed to be positive definite. Relaxed SVM

Jayadeva\current papers\fsmo\l2smo1.doc Page 3 of 19

therefore has the advantage of linear update rules, coupled with positive definite
matrix. With respect to training time, we empirically show that Relaxed SVM scales
much better with the size of the data set, when compared to Proximal SVM and LSSVM.

Finally, we show that the classical least squares SVM formulation (1)-(2) can be solved
by solving a single Relaxed LSSVM with a modified kernel matrix. This opens up the
route to alternative IDSA style algorithms for solving LS-SVMs.

The remainder of the paper is organized as follows. Section II discusses the LSSVM and
Proximal SVM formulations. Section III is devoted to the Relaxed LSSVM formulation

and an algorithm for its solution. Section IV deals with variants of the Relaxed LSSVM.
Section V deals with experimental results. Section VI contains a discussion on how the
Relaxed LSSVM is related with the classical LSSVM. Section VII contains concluding
remarks. Appendix I presents an extension to the conventional LSSVM through a single

unconstrained minimization.

II. Least Squares and Proximal SVMs

Suykens and Vandewalle proposed Least Squares SVMs (LS-SVMs) in 1998 [5], which
solves the following optimization problem.

qq
C

ww
TT

wbq 22

1
 Minimize

,,
+ (5)

 subject to

()[] MiqbPwy ii

T

i ,1,2,... 1, ==++φ (6)

where 0>C is a parameter. The first term on the R.H.S. of (9) is a for regularization,

while the second term is the empirical error. The constant C determines the relative
importance of the two. Writing the Karush-Kuhn-Tucker (KKT) necessary and sufficient
optimality conditions and simplifying, Suykens and Vandewalle showed that the LS-SVM
classifier parameters w and b may be determined by solving the following system of

equations.









=























+

−

e

b

C

I
Ky

y
T

0

0

λ
 (7)

where λ is the vector of Lagrange multipliers, e is a vector of M ones, I is an identity
matrix of size M x M , and K is the kernel matrix, whose entries are given by

()[] (), 2, 1, , Mj i,xxK
iTi

ij == φφ (8)

As pointed out by Suykens and Vandewalle [5], the system of equations (7) can be
solved by iterative methods. However, the matrix on the L.H.S. of (7) is not positive
definite. By using appropriate transformations such as preconditioning (such as those
given in [5], the system may be transformed into a positive definite one so that

iterative methods such as conjugate gradient or successive over-relaxation may be
applied.

Jayadeva\current papers\fsmo\l2smo1.doc Page 4 of 19

Proximal SVMs, introduced by Fung and Mangasarian in 2001 [6], solve the following
problem

qq
C

bww TT

wbq 22

1

2

1
 Minimize 2

,,
++ (9)

subject to the constraint

() .eqebDwKKD
T =++ (10)

Here, e is a vector of ones of appropriate dimension; I is the identity matrix; and D is a
diagonal matrix whose entries are the class labels (±1) of the patterns. Simplification of

the K.K.T. conditions leads to

, , DvebDvDKw
TT == (11)

where

() .

1

eDeeKKD
C

I
v

TT

−







++= (12)

The cost of solving a general system of linear equations or of inverting a matrix is the

same, O(M 3), where M is the size of the system or the order of the matrix. The aim of
this paper is to suggest a more efficient route to training SVMs formulated in the least

squares sense.

III. A Twist to Proximal SVMs

We first consider the problem

qq
C

b
A

ww TT

wbq 222

1
 Minimize 2

,,
++ (13)

subject to constraint (6). We refer to this problem as the Relaxed LSSVM; its objective

function is in the spirit of the Proximal SVM when A = 1. However, note that for a
general nonlinear kernel, the constraints are very different from those employed in
Proximal SVMs, viz. (10). While the objective function is similar to Proximal SVMs, the
constraints are those of LS-SVMs.

The Lagrangian for the problem (13) subject to constraints (6) is given by

() ()[][].1
22

1
1

2 ∑ =
+−−−++=

M

i

kT

kkk

TT bxwyqqq
C

AbwwL φλ (14)

The K.K.T. optimality conditions are given by

() (). 0 0
11 ∑∑ ==

=⇒=−⇒=∇
M

k

k

kk

M

k

k

kkw xywxywL φλφλ (15)

∑∑ ==
=⇒=−⇒=

∂

∂ M

k kk

M

k kk y
A

byAb
b

L
11

.
1

 0 0 λλ (16)

. 0 0
C

qCq
q

L k
kkk

k

λ
λ =⇒=−⇒=

∂

∂
 (17)

()[] .11
C

qbxwy k
k

kT

k

λ
φ −=−=+ (18)

From (15) and (16), we observe that

Jayadeva\current papers\fsmo\l2smo1.doc Page 5 of 19

() ()[] () () 







+=+=+ ∑∑∑ === A

xxKyy
A

xxybxw
kM

k kk

M

k kk

M

k

Tk

kk

T 1
,

1
111
λλφφλφ (19)

where the kernel function K is defined in the usual manner.

The dual formulation is obtained by maximizing L, which, on simplification, is given by

Maximize ,
2

1
1 11 ji

M

i

M

j ij

M

i i λλQλ ∑ ∑∑ = ==
−

or equivalently,

Minimize ,
2

1
11 1 ∑∑ ∑ == =

−
M

i iji

M

i

M

j ij λλλQ

(20)

where

.

,
11

,
1









=++

≠+
=

ji
CA

K

ji
A

yyK
Q

ii

jiij

ij (21)

Note that we have an unconstrained Quadratic Programming Problem, without even box

constraints. For any positive definite kernel K, the matrix Q is guaranteed to be positive
definite. The additional term (1/C) in the diagonal entries of Q are expected to also
contribute to faster convergence as compared to when K alone is used.

We now derive a sequential minimization procedure for determining the
Lagrange multipliers λi, i.e. by updating one multiplier at a time. Without loss of

generality, let λ1 be the multiplier being updated. The objective function in (20) may be

rewritten as a function of λ1 only, as

() ,
2

1

2

1
2 22 1111

2

1211 ∑ ∑∑∑ = ===
−−−+=

M

i

M

j ijji

M

j jj

M

j j QλλQλQλE λλλλ (22)

where we have assumed that Q is symmetric. For the new value of λ1 to lie at an
extremal point of Q(λ1), we have

.01 0
2 1111

1

=−−⇒=
∂

∂
∑ =

M

j jj

new λQQ
E

λ
λ

 (23)

For the extremal point to be a maximum, we require

.0 0 112

1

2

>⇒<
∂

∂
Q

E

λ
 (24)

Note that this condition may be satisfied by matrices Q that are not necessarily positive
definite, as required in the case of typical SVM learning algorithms [19]. From (23), we
obtain

.1
2 1111 ∑ =

−=
M

j jj

new λQQ λ (25)

Note that the second term on the R.H.S. of (25) may be written as

[] .
1 11111 11112 1 ∑∑∑ ===

+−=+−=
M

j

old

jj

oldM

j

old

jj

oldM

j

old

jj λQλQλQλQλQ (26)

Defining

() ,)(bxwxf
T +≡ φ (27)

Jayadeva\current papers\fsmo\l2smo1.doc Page 6 of 19

and from (19) and (21), we rewrite (26) as

().1

11112 1 xfyλQQλ
oldoldM

j j

old

j +−=∑ =
 (28)

Substituting from (28) into (25), we have

().1
1

1111111 xfyQQ
oldoldnew −+= λλ (29)

which gives us the update rule

()
.

1

11

1

1
11

Q

xfy
old

oldnew −
+= λλ (30)

In general, the k-th multiplier is updated by using the rule

()
.

11

1









++

−
+=

CA
K

xfy

kk

kold

kold

k

new

k λλ
(31)

We can now write the update algorithm for determining the solution to (13) constrained
by (6), which we term as the 2SMO algorithm.

The 2SMO Algorithm for the Relaxed LSSVM

1. Pick a multiplier λk that violates (18), i.e. () ()().11
kold

k

kkold
xfC

C
xf −≠⇒−≠ λ

λ

2. If all multipliers satisfy the K.K.T. conditions, then the minimum has been
attained. Stop.

3. Update λk by using (31).

4. Go to Step 1.

The update rule updates one multiplier at a time, and the convergence of the 2SMO
update rule (31) is linear in M. This also follows from the work of [20]. The update rule

is attractive from many viewpoints. The new value of)(
i

xf , denoted by)(
inew

xf , may

be computed by computing the incremental change in multiplier λk, which depends only

on Kik. Advantages in terms of a distributed or parallel implementation using O(M)
processors may be a topic of future research.

It is also possible to simplify the above update algorithm by avoiding checks for the
K.K.T. conditions, and continue updating multipliers until the change in their values falls
below a specified tolerance. However, this proves to be less efficient.

IV. Variants of the Relaxed LSSVM

A simple variant of is obtained by changing the constraints to inequality ones, i.e. we
consider the problem

qq
C

b
A

ww
TT

wbq 222

1
 Minimize

2

,,
++ (32)

subject to the constraints

()[] .,1,2,... 1, MiqbPwy ii

T

i =≥++φ (33)

Jayadeva\current papers\fsmo\l2smo1.doc Page 7 of 19

The change in the constraints to an inequality appears redundant, since if the L.H.S. is
greater than 1, it can always be met as an equality by reducing the value of the error
variable. However, in the dual formulation, the Lagrange multipliers are now
constrained to be non-negative. The K.K.T. conditions specify that

()[] ,1 0 ≥+⇒= bxwy
iT

ii φλ (34)

()[] .1 0
C

bxwy iiT

ii

λ
φλ −=+⇒≠ (35)

Using (34) and (35), we can derive another update rule, which reduces the number of
multipliers that need to be updated. Since the multipliers are bounded from one side
and not from the other, we refer to this as the SeqsuiSMO algorithm.

The SesquiSMO Algorithm for the Relaxed LSSVM

1. Pick a multiplier λk that violates (34) or (35). If all multipliers satisfy the K.K.T.

conditions, then the minimum has been attained. Stop.
2. Update λk by using (31).

3. Go to Step 1.

One of the desirable features of the classical SVM is that the multipliers are bounded

from both below and above. This is useful when implementation needs to consider finite
word length effects, e.g. in embedded systems. It also simplifies checks for terminating
updates. In classical SVMs, the classifier can be very sensitive to a few training patterns
that lie near the decision boundary; Least Squares SVMs offer a less sparse solution but
are more robust to noise because the classifier depends on nearly all data patterns;

small changes in individual patterns do not tend to perturb the classifier in a major way.

V. Experimental Results

The 2SMO and the SesquiSMO algorithms were implemented in C++ and run on

a a dual 3.2GHz Xeon server with 4 GB RAM with the Linux OS. We used the RBF kernel
in all our experiments, with the value of the exponent (gamma) set to 1. The value of
the slack parameter C was also chosen to be 1. Unless otherwise mentioned, in all our
experiments, the kernel entries were computed on a need basis and cached for further

use. All results are reported by following the standard 10-fold cross-validation
methodology.

Jayadeva\current papers\fsmo\l2smo1.doc Page 8 of 19

The performance of the algorithms was compared with that of the C
implementation of LSSVM running on the same platform. We ran a series of
experiments to study the effect of the parameter A, for a fixed value of C. Figures 1
and 2 show the effect on training time, of varying A for the kr-vs-kp and mushroom

datasets, respectively. The plot indicates that training time montonically decreases with
A, and that the rate of decrease of training time varies inversely with the value of A; the
lower the value of A, the greater is the rate at which the training time decreases. The
training time saturates beyond a sufficiently large value of A (104). This behavior may

be understood from equation (31). A larger value of A corresponds to a larger step size,
and the algorithm converges faster, leading to a lower value of training time. The rate

of change of the step size is larger for smaller values of A. This explains why the curve
has a much larger slope for lower values of A. Therefore, a large value of A is a prudent
choice.

Fig. 1. Plot of training time vs. A for the kr-vs-kp dataset.

KR vs KP

0

50

100

150

200

250

300

0 2 4 6 8 10 12

log(A)

T
ra

in
in

g
 T

im
e

2SMO

SesqSMO

Jayadeva\current papers\fsmo\l2smo1.doc Page 9 of 19

In order to understand how the algorithm scales with the number of training
samples, we ran SesquiSMO, LSSVM and L2SMO on partitions of the mushroom dataset.

No kernel caching was used in the case of SesquiSMO. The sizes of the training sets
were chosen to be integral multiples of 1/12th of the total size. Figure 3 shows the
variation of the training times of SesquiSMO, LSSVM and L2SMO with subset size for the
adult dataset. Least squares fits to the three curves are given by:
tLSSVM = 1.2409x

2
 - 10.0613x + 22.4068

t2SMO = 0.8053x
2
 - 6.6341x + 14.8170

tSesquiSMO =0.6889x
2
 - 5.6329 x + 12.8290

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000 30000

LSSVM

L2SMO

SeSqSMO

Mushroom

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12

log(A)

T
ra

in
in

g
 T

im
e

SesqSMO

2SMO

Fig. 2. Plot of training time vs. A for the mushroom dataset.

Fig. 3. Plot of variation of training times for SesquiSMO, LSSVM and
L2SMO with increasing size of the adult dataset for training

Jayadeva\current papers\fsmo\l2smo1.doc Page 10 of 19

In other words, with increase in the size of the dataset, the training time for
SesquiSMO grows at a much slower rate than it does for LSSVM. This indicates that
2SMO and SesquiSMO scale better than LSSVM.

We next conducted a set of experiments on a number of binary classification
datasets from the UCI repository. The datasets were picked to cover a wide range of
number of features and instances. The first column of Table 1 presents the number of
instances and features for each dataset in the corresponding order as comma-separated

values along with the name of the dataset. The largest subset of points that could be
accomodated was limited by the memory requirements of LSSVM. The results on the kr-

vs-kp and mushroom datasets therefore correspond to 50% of the complete datasets.
The Table indicates the training times, accuracy, and the number of support vectors
yielded by 2SMO, SeqquiSMO, and LSSVM on each of the datasets. Based on the results
of the first experiment, we chose A = 104 for 2SMO. The experiments for all datasets

were conducted with kernel caching. In nearly all cases, the three algorithms find
solutions with the same number of support vectors, and show the same generalization
performance.

Table 1: Comparison between training times for LSSVM, 2SMO, and SesquiSMO. In
nearly all cases, the three algorithms find solutions with the same number of support

vectors, and show the same generalization performance.
DATASET METHOD SUPPORT VECTORS ACCURACY TRAINING TIME (S)

LSSVM 215 67.02 ± 0.98 0.023

2SMO 215 66.60 ± 1.14 0.009
BREAST-CANCER

(286,51)
SesquiSMO 215 66.60 ± 1.14 0.006

LSSVM 359 85.53 ± 1.10 0.044

2SMO 357 91.19 ± 0.88 0.020
BREAST-W

(699,10)
SesquiSMO 356 91.19 ± 0.88 0.021

LSSVM 783 69.78 ± 0.76 0.204

2SMO 783 69.78 ± 0.76 0.157
CREDIT-G

(1000,64)
SesquiSMO 783 69.78 ± 0.76 0.151

LSSVM 240 54.72 ± 1.16 0.019

2SMO 240 54.72 ± 1.16 0.012
HEART-C
(302,23)

SesquiSMO 240 54.72 ± 1.16 0.010

LSSVM 233 66.35 ± 0.85 0.017

2SMO 233 66.35 ± 0.85 0.011
HEART-H
(294,25)

SesquiSMO 233 66.35 ± 0.85 0.010

LSSVM 165 79.45±0.87 0.04

2SMO 165 79.43±0.96 0.03
HEART-STATLOG

(270,14)
SesquiSMO 135 78.34±1.10 0.009

LSSVM 113 77.86±1.52 0.009

2SMO 113 81.45±1.54 0.001
HEPATITIS

(155,30)
SesquiSMO 109 81.45±1.54 0.001

LSSVM 230 93.12 ± 1.24 0.056

2SMO 230 94.82 ± 0.88 0.017
IONOSPHERE
(350,35)

SesquiSMO 198 95.03 ± 0.78 0.011

PIMA-INDIAN LSSVM 601 65.96 ± 0.95 0.100

Jayadeva\current papers\fsmo\l2smo1.doc Page 11 of 19

2SMO 601 65.96 ± 0.95 0.073 (768,9)

SesquiSMO 601 65.96 ± 0.95 0.069

LSSVM 2890 93.85 ± 0.17 3.123

2SMO 2890 93.85 ± 0.17 2.093
SICK

(3772,33)
SesquiSMO 2890 93.85 ± 0.17 1.953

LSSVM 146 83.61 ± 1.49 0.018

2SMO 146 82.50 ± 1.61 0.007

SONAR

(208,61)
 SesquiSMO 138 81.62 ± 1.85 0.004

LSSVM 222 72.71 ± 2.32 0.017

2SMO 223 84.15 ± 1.16 0.006
VOTE

(435, 33)
SesquiSMO 223 84.15 ± 1.16 0.006

LSSVM 1582 89.86 ± 1.67 0.905

2SMO 1582 92.62 ± 1.11 0.450 KR-VS-KP

SesquiSMO 1582 92.62 ± 1.11 0.435

LSSVM 4030 99.98 ± 0.02 7.005

2SMO 4030 100 ± 0.00 4.27 MUSHROOM

SesquiSMO 4030 100 ± 0.00 4.04

It can be observed that the training time of SesquiSMO is consistently lower than
that of 2SMO and LSSVM. For larger datasets, SesquiSMO achieves higher speedup

factors, roughly between 2 and 4. We note that all three algorithms converge to
solutions with approximately the same number of support vectors, on all datasets.

2SMO therefore emerges as an attractive alternative to implementing least squares
SVMs.

VI. Relating the The Relaxed LSSVM formulation with the Classical LSSVM

VI.I. Extension to the conventional LSSVM through Penalty Functions

We now discuss the connection between the classical LSSVM formulation and the
relaxed SVM one. We also derive two simple update rules based on the 1SMO
formulation.

Given an optimization problem of the form

(),Min xf (36)

subject to the constraints
() , ..., ,2 ,1 ,0 Ljxh j == (37)

where f(x) is convex and hj(x), j = 1, 2, …L, are linear, the solution to (36)-(37) may be

determined using the theory of Sequential Unconstrained Minimization Techniques

(SUMTs). This is achieved by solving a sequence of optimization problems [21] of the
form

() ,)()(Min
1

2∑ =
+=

L

j jpp xhx fxE α (38)

The procedure may be outlined as follows
1. Set p = 0. Choose the value of the co-efficient α0, and an initial state x

0
.

Jayadeva\current papers\fsmo\l2smo1.doc Page 12 of 19

2. Find the minimum of Ep(x). Denote the solution as x
p*

.

3. If the constraints (37) are satisfied, stop.
4. If not, choose xp* as the new initial state, and choose αp+1 such that αp+1 > αp. Set

p = p + 1. Go to step 2.
5. In the limit, as p → ∞, the sequence of minima x1*

, x
2*

, … x
p*

, …, will converge to

the solution of the original problem (36)-(37).

The above procedure, which is a restriction of Sequential Unconstrained Minimization
Techniques to convex programming problems with equality constraints, allows us to
extend the 2SMO algorithm to the classical LSSVM. To do this, we first note that the
dual of the classical LSSVM (5)-(6) is given by

∑∑ ∑ == =
−

M

1i1 1

2

1
 Minimize iijji

M

i j

M

j i Pyy λλλ
λ

 (39)

 subject to the constraints

,yλ i

M

i i 0
1

=∑ =
 (40)

where

.
,

1

,








=+

≠

=
ji

C
K

jiK

P
ii

ij

ij
 (41)

The SUMT based procedure outlined above indicates that we need to solve a
sequence of minimization problems of the form

() ∑∑ ∑

∑∑∑ ∑

== =

=== =

−+=

+−=

M

i ipijji

M

i j

M

j i

M

i iipiijji

M

i j

M

j ip

λ αPλλyy

yαPyyE

11 1

2

1

M

1i1 1

2
2

1

2

1
 Minimize λλλλ

λ
 (42)

Note that the sequence of minima of (42) yields the solution to the classical SVM
formulation (40)-(41) in the limit p → ∞, in which case, we also see that αp → ∞.

 The connection between the relaxed SVM and the classical LSSVM is now clear.
Observe that (42) is identical to the relaxed SVM formulation of (20)-(21), with αp =

1/2A. Therefore, the solution to the classical SVM cannot be obtained by setting A=0 in
(20)-(21), but by solving a sequence of problems with diminishing values of A, and with
A → 0 in the limit. Thus, the 2SMO algorithm needs to be incorporated into a loop in

which A is progressively reduced to zero, and for each fixed value of A, steps 1-3 of the
2SMO algorithm are executed. This algorithm may be summarized as follows.

Simulating the LSSVM through the Relaxed LSSVM

1. Set A, and the factor ρ by which A will be changed in the sequence of sub-problems.

2. Run the 2SMO algorithm with the specified value of A until convergence is attained.
3. If λTy is sufficiently close to 0, Stop. Otherwise, go to Step 4.
4. Update A as A ← ρA. Increment the value of the number of SUMT iterations.

5. Go to Step 2.

Jayadeva\current papers\fsmo\l2smo1.doc Page 13 of 19

We ran a SUMT based algorithm as described above on two datasets, viz.,
mushroom and breast-cancer. For each experiment, we initialize A with a value of 104 ,
and successively reduce A by a factor of ρ=0.9. We observe the value of λTy after each
SUMT-iteration (comprising step 3). Figure 3 shows how λTy reduces as a function of
the number of SUMT-iterations. As expected, the value of λTy decreases with successive

iterations and quickly converges to 0. Figure 4 shows for the sick dataset, how the
Lagrange multipliers for 2SMO converge to the solution obtained by LSSVM, as

iterations progress. The plot demonstrates that the sequence of Relaxed LSSVM sub-
problems converges to the solution of the classical SVM.

 At this point, we remark that the offset b is given by (29) for any nonzero value
of A. However, when A = 0, the expression for b is a ratio of two quantities that are
zero. This may be interpreted by noting that in the classical SVM, the value of b is
indeterminate, since it may be determined by considering any of the support vectors,
for which

()[] ()
()iT

i

i

iTiT

i

xwyb

ybxwbxwy

φ

φφ

−=⇒

=+⇒=+

 1
 (43)

since 1
2 =iy . The value of b may be determined from any support vector, or by

averaging the values obtained for different support vectors. The classical LSSVM
solution may therefore be treated as the limiting case of a Relaxed SVM. Of course, this

is only of academic interest, and is not a computationally attractive procedure, since a
number of Relaxed LSSVM problems need to be solved to obtain the LSSVM solution.

 We now change our focus to two different approaches for solving the classical

LSSVM, and show that it is not necessary to find the solution to the classical SVM by
solving a sequence of problems, but by solving a single unconstrained problem.

Fig. 4. Plot of ||λSUMT – λLSSVM|| vs. iteration number for the SUMT based

algorithm on the sick dataset.

0 50 10
0 15

0
200 250 300 350 400 450 50

0
0

5

10

15

20

25

30

35

40

Iteration number

||λ
S

U
M

T
 –

 λ
1
S

V
M

||

Jayadeva\current papers\fsmo\l2smo1.doc Page 14 of 19

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

Iteration number

||
λ

T
*y

||

VII. Concluding Remarks

In this paper, we introduce a variant of the classical LSSVM, which we term as the
Relaxed LSSVM. The Relaxed SVM differs from the conventional LSSVM in having the

additional term 2

2
b

A
 in the objective function; in this respect, it may be treated as a

Least Squares Formulation with an objective function similar to the Proximal SVM [6]
and constraints of the classical LSSVM. We show that the Relaxed SVM can be solved
through its dual, which involves an unconstrained quadratic minimization problem. This
leads to an efficient update rule for the multipliers, termed as 2SMO, in which individual

multipliers are updated. The simplicity of the 2SMO Algorithm allows for several

optimizations. For example, caching the values of 1−
iiK requires only O(M) storage, but

reduces the computational cost significantly per iteration. We discuss some of the
implementation aspects and demonstrate on a number of benchmark datasets that the

update rules proposed in this work can be used to obtain marked in terms of
convergence time.

The update rule also allows for the updates to be distributed over several
processors, each responsible for updating a small subset (ideally a single) multiplier.

This is of value in a distributed setting, where the dataset may be either collected over
a network, or may be so large that it cannot be handled on a single machine. This may

be of particular value in online learning scenarios on large distributed systems.

Fig. 5. Plot of variation of λ
T
y with increasing iteration numbers for the SUMT

based algorithm on the ionosphere dataset.

Jayadeva\current papers\fsmo\l2smo1.doc Page 15 of 19

We show three ways in which a similar update rule can be developed for the

classical LSSVM, which normally requires the minimization of a quadratic objective
function subject to a linear constraint. Firstly, the theory of Sequential Unconstrained

Minimization Techniques shows that the SVM can be solved through a sequence of
Relaxed LSSVMs, in which the co-efficient A is successively reduced to zero. Secondly,
by using exact penalization, we derive a new objective function. It may be observed
that other rules may be obtained by using different exact penalty functions [24], where

a differential equation is solved to obtain the multipliers. Thirdly, we show that the
classical LSSVM can be reduced to an unconstrained quadratic minimization problem.

Whether the solution of LSSVM through Relaxed SVMs is computationally advantageous
is an interesting question for current investigation.

References

1. V. Vapnik, Statistical Learning Theory, Wiley, 1998.
2. N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and

other kernel based learning methods, Cambridge University Press, 2000.
3. P.S. Bradley and O.L.Mangasarian “Massive data discrimination via linear support

vector machines”, Optimization Methods and Software, 13, pp.1-10, 2000.
4. C. Burges, "A tutorial on support vector machines for pattern recognition", Data

Mining and Knowledge Discovery, 2, No. 2, pp. 121-167, 1998.
5. Suykens J.A.K., Vandewalle J., “Least squares support vector machine classifiers'',

Neural Processing Letters, 9, No. 3, pp. 293-300, June 1999.
6. G. Fung and O.L. Mangasarian, "Proximal support vector machine classifiers", in

D.Lee et al (Eds.), Proc. KDD-2001: Knowledge Discovery and Data Mining, San
Francisco, CA, Association for Computing Machinery, New York, pp. 77-86, 2001.

7. E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector
machines. In Proc. of IEEE NNSP’97, Amelia Island, Florida, Sep. 24-26, 1997.
Online at http://citeseer.ist.psu.edu/osuna97improved.html

8. J. C. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Sch¨olkopf, C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1998.

9. J. Platt. Using sparseness and analytic QP to speed training of support vector

machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural
Information Processing Systems 11. MIT Press, 1999.

10. S.S. Keerthi et. al, “Improvements to Platt’s SMO algorithm for SVM classifier design,
Neural Computation,” 13 pp. 637-649, 2001.

11. S.K. Shevade et. al, “Improvements to the SMO algorithm for SVM regression”, IEEE
Transactions on Neural Networks, 11 pp. 1188-1194, 2000.

12. T. Joachims, “Making large-scale support vector machine learning practical,” in
Advances in Kernel Methods: Support Vector Machines, B. Scholköpf, C. Burges, and
A. Smola, Eds. Cambridge, MA: MIT Press, 1998.

Jayadeva\current papers\fsmo\l2smo1.doc Page 16 of 19

13. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,
2001. Online at http://www.csie.ntu.edu.tw/∼cjlin/libsvm

14. T. Glasmachers and C. Igel, “Maximum-Gain Working Set Selection for SVMs",
Journal of Machine Learning Research 7 (2006) 1437–1466.

15. C.-J. Lin, “On the convergence of the decomposition method for support vector
machines,” IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1288–1298, Nov. 2001.

16. X. Zeng and X.-W. Chen, "SMO-based pruning methods for sparse least squares
support vector machines", IEEE Transactions on Neural Networks, 16, No. 6, pp.
1541 - 1546, Nov. 2005.

17. S.S. Keerthi and S.K. Shevade, ""SMO algorithm for least squares SVM", Proc.

International Joint Conference on Neural Networks 2003, Volume 3, pp. 2088-2093,
20-24 July 2003.

18. Kecman V., T.-M. Huang, M. Vogt, “Iterative Single Data Algorithm for Training
Kernel Machines from Huge Data Sets: Theory and Performance”, in Support Vector
Machines: Theory and Applications, Ed. L. Wang, Series: Studies in Fuzziness and
Soft Computing, Vol. 177, Springer-Verlag, pp. 255-274, 2005.

19. P.S. Sastry, “An Introduction to Support Vector Machines”, private communication.
20. Luo, Z. Q., & Tseng, P. (1993). Error bounds and convergence analysis of feasible

descent methods: A general approach, Annals of. Operations Research, 46, (pp.
157–178).

21. A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential unconstrained
minimization techniques. Wiley and Sons, New York, 1968.

22. R. Fletcher, Practical methods of optimization, John Wiley, 1987.
23. R. Fletcher, “A Class of Methods for Nonlinear Programming with Termination and

Convergence Properties”, in J. Abadie (Ed.), Methods for Nonlinear Programming,
24. A. Bhaya and E. Kaszkurewicz, "Control Perspectives on Numerical Algorithms And

Matrix Problems", Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2006.

25. L.V. Ferreira, E. Kaszkurewicz, and A. Bhaya, " Support vector classifiers via gradient
systems with discontinuous righthand sides", Neural Networks, 19, pp. 1612–1623,
2006.

26. J. A. K. Suykens, P. Van Dooren, B. De Moor, and J. Vandewalle. “Least squares
support vector machine classifiers: a large scale algorithm”, European Conference
on Circuit Theory and Design, pp. 839-842, 1999.

Jayadeva\current papers\fsmo\l2smo1.doc Page 17 of 19

Appendix I

Extension to the conventional LSSVM through a Single Unconstrained
Minimization : Non-smooth penalty functions

In the case of convex programming problems, it is possible to use exact penalty

functions [22], [23] that require the solution of a single unconstrained minimization,
instead of a sequence of problems, as in the case of SUMTs. On the lines of the exact

penalty function proposed in [21]-[25], we note that the solution to (39)-(40) can be
determined by solving the following problem.

λyβλeDPDλλE
TTT

C +−=
2

1
 Minimize

λ
 (44)

Following [24], [25], it can be shown, using a Control Lyapunov Function approach,
that the gradient dynamical system

()rβyGλeλ sgn−−=& (45)

λyr
T &&= (46)

where G = DPD, r = y
Tλ and

()




<−

>
=

0,1

0,1
sgn

θ

θ
θ (47)

converges to a solution of the problem (39)-(40) for any choice of β, and starting from

any initial λ.

27. Solution through Substitution

We once again consider the problem (39)-(40). The Lagrangian for this problem

may be written as

(),
2

1

2

1
111 1

yeGyλγ λ GλλL TTT

i

M

i i

M

i i

M

i

M

j ijji λγλλλ −−=−−= ∑∑∑ ∑ === =
 (48)

where
G = DPD, (49)

D being a diagonal matrix containing class labels on its diagonal. A minimum of (39)-
(40) requires that the K.K.T. conditions for a minimum of (48) are satisfied. In other
words,

. 0 0 eDPDλyγyγeDPDλLλ −=⇒=−−⇒=∇ (50)

Pre-multiplying (50) by yT, we have

() ().1
 eyDPDλy

M
eyDPDλyMeyDPDλyγyy TTTTTTT −=⇒−=⇒−= γγ (51)

Substituting in (48), we obtain

Jayadeva\current papers\fsmo\l2smo1.doc Page 18 of 19

()

()

.
2

1

12

2

1

1

2

1

1

2

1

λλλ

λλλ

λλλλ

λλλ

TT

TTTT

TTTTTT

TTTTT

dW

eyy
M

IDPDyy
M

DPD

eyyλDPDλyy
M

eDPD

eyDPDλyyλ
M

eDPDL

−=

















−−





−=

−−−=

−−−=

 (52)

where

.
1

 ;
2

eyy
M

IdDPDyy
M

DPDW TT








−=








−= (53)

Therefore, the solution to (47)-(49) and the solution to the following problem have a

one-to-one correspondence.

,
2

1
 Minimize λλλ

λ

TT dW − (54)

where W and d are given by (53). In order for us to develop a 2SMO style update
algorithm for solving (54), we require W to be positive semi-definite; this is not
ensured in general.

 We modify the Lagrangian in (52) to

[] .
2

12

2

1
λλ

α
λλλ DPDyyeyy

M
IDPDyy

M
DPDL

TTTTTT +















−−





−= (55)

Note that the last term on the R.H.S. of (55) is positive semi-definite everywhere. This

is because the matrix DPDyy
T is positive definite, it being the product of two positive

definite matrices. On the feasible surface, y
Tλ = 0, and hence, the last term is zero,

since it may be rewritten as ()()λλ
α

DPDyy
TT

2
. We observe that (55) may be simplified

to

,
2

2

1

12

2

1

λλαλ

λλαλ

TTT

TTTT

dDPDyy
M

DPD

eyy
M

IDPDyy
M

DPDL

−















−+=

















−−
















−+=

 (56)

where d is given by (53). The consequence is that W is modified to W1 , where

.
2

1 DPDyy
M

DPDW
T









−+= α (57)

We observe that for sufficiently large α, the matrix W1 on the L.H.S. of (57) will be

positive semi-definite. We remark that the form of (54) can also be obtained by using

the exact penalty function proposed by Fletcher [23] for equality constrained problems.

Jayadeva\current papers\fsmo\l2smo1.doc Page 19 of 19

 We further remark that the fact that λT
y = 0 on the feasible surface may be

utilized to allow the use of kernel matrices that are not necessarily positive definite.
This may be done by modifying the Lagrangian in (56) to

()

()

.
2

2

1

2

2

2

1

2

2

2

1

2

2

2

1 2

λλβαλ

λλλ
β

λαλ

λλλ
β

λαλ

λ
β

λλαλ

TTTT

TTTTT

TTTTT

TTTT

dyyDPDyy
M

DPD

dyyDPDyy
M

DPD

dyyDPDyy
M

DPD

ydDPDyy
M

DPDL

−







+








−+=

−+















−+=

−+















−+=

++−















−+=

 (58)

The values of α and β need to be chosen so that the Hessian is always positive semi-

definite. The possibility of using Non-Mercer kernels by choosing a larger value of β is

worthy of further investigation, and bears a certain resemblance to the regularization
term used in Ridge Regression and similar approaches. Larger values of α and β may

also have a bearing on the convergence rate. We examine some of these aspects in a
companion paper. However, a minor point of consideration is, that for larger values of

α, the matrix DPDyy
M

DPD T








−+

2
α is not necessarily symmetric. We consider the

quadratic form

λλλ TT dRE −=
2

1
 (59)

and note that when R is not symmetric, it may be replaced by its symmetric

component, that is ()T
RR +

2

1
. This is because

() () ,
2

1

2

1
λλλλλλ TT

RR
T

RR
T

R
T −++= (60)

but

() ,0
2

1
=− λλ T

RR
T (61)

since the matrix (R – RT) is antisymmetric.

The results indicate that one could solve the LSSVM through a Relaxed LSSVM, and
evolve update algorithms similar to the 2SMO or SesquiSMO. However, note that
additional computations may be required to determine matrices W1 and the vector d.
These are likely to adversely affect any potential speedup. We defer further discussion

on this aspect for the present.

