Regression
 Instructor: Prof. Ganesh Ramakrishnan

Recap

- Supervised (Classification and Regression) vs Unsupervised Learning
- Three canonical learning problems
- What is data and how to predict
- More on this today in the context of regression
- Squared Error

Agenda

- What is Regression
- Formal Defintion
- Types of Regression
- Least Square Solution
- Geometric Interpretation of least square solution

Regression

- Finding correlation between a set of output variables and a set of input variables
- Input variables are called independent variables
- Output variables are called dependent variables
$y=f(x) \ldots$ Linear regression, f is linear

Examples

- A company wants to how much money they need to spend on T.V advertising to increase sales to a desired level, say y^{*}
- They have previous data of form $\left\langle x_{i}, y_{i}\right\rangle$, where x_{i} is money spent on advertising and y_{i} are sale figures
- They now fit the data with a function, lets say linear function \therefore To get
In y, you need $\Delta y / \beta_{1} \leftarrow y=\beta_{0}+\beta_{1} * x \xrightarrow{\text { so }} y_{i} \approx \beta_{0}+\beta_{1} x_{i} \forall i(1)$ and then find the money they need to spend using this function
- Regression problem is to find the appropriate function and its coefficients

We will replace x by $\phi(x)$

Figure: Linear regression on T.V advertising vs sales figure

What if sales is a non-linear function of advertising? : $y=\beta_{0}+\beta_{1} \phi(x) \quad x=$ date for Sales investment in TV company
\qquad ie Y varies approximately as $\sqrt{\phi(x)}$

$$
y=\beta_{0}+\beta_{1} \sqrt{\phi(x)}
$$

OR Y vanes approximately as $\phi^{2}(x)$

$$
y=\beta_{0}+\beta_{1} \phi^{2}(x)
$$

In reality, could be a combination?

$$
\begin{aligned}
& \text { In reality, could be a combination. } \\
& y=\beta_{0}+\beta_{1} \phi(x)+\beta_{2} \sqrt{\phi(x)}+\beta_{3} \phi^{2}(x)+\ldots \text { we want to learn } \beta_{0}, \beta_{1} \\
& \text { we wore y } x \text { (approx }
\end{aligned}
$$

we want to learn $\beta_{0}, \beta_{1}, \beta_{2} \ldots$
We assume $1-1$ mapping between $y \& x$ (approx map y) -ping)

Given n observations: $\left[\begin{array}{c}y_{1}, \phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{1}\right) \ldots \phi_{p}\left(x_{1}\right) \\ y_{2}, \phi_{1}\left(x_{2}\right), \phi_{2}\left(x_{2}\right) \ldots \phi_{p}\left(x_{2}\right) \\ \vdots \\ \text { day corresponds to for the } \\ y_{n}, \phi_{1}\left(x_{m}\right), \phi_{2}\left(x_{m}\right) \ldots \phi_{p}\left(x_{m}\right)\end{array}\right]$
$\phi_{1}\left(x_{i}\right), \phi_{2}\left(x_{i}\right) \ldots \phi_{p}\left(x_{i}\right)$ are different attributes of the $T \cdot V$ company on day i
y_{i} is the amount of sales on day i
We need to estimate $\omega_{0}, \omega_{1}, \omega_{2} \ldots \omega_{k}\left(\beta_{1}, \beta_{2} \ldots\right.$ on such that previous slide)

$$
y_{i} \approx \omega_{0}+\omega_{1} \phi_{1}\left(x_{i}\right)+\omega_{2} \phi_{2}\left(x_{i}\right)+\cdots+\omega_{k} \phi_{k}\left(x_{i}\right)
$$

For eg, on prev slide: $\phi_{i}\left(x_{i}\right)=a d \quad \sqrt{\phi_{1}\left(x_{i}\right)}$ Investment
on $i^{\text {th }}$ day

Some more notes.
(1) $\phi_{1} \ldots \phi_{k}$ can be any attribute that has the potential of linearly influencing y
(2) $\phi_{1}\left(x_{i}\right), \phi_{2}\left(x_{i}\right) \ldots \phi_{p}\left(x_{i}\right)$ may or may not be functions of each other...
But certain machine learning approaches are robust to interdependencies among ϕ_{j} 's and certain others are NOT
(3) You could use ML workbench such as WEKA (warkoto univ, New Zealand) to study ϕ_{j} 's that "linearly influence" y.

Formal Definition

- Two sets of variables: $x \in \mathcal{R}^{N}$ (independent) and $y \in \mathcal{R}^{k}$ (dependent)
- D is a set of m data points: $\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle, \ldots,\left\langle x_{m}, y_{m}\right\rangle$
- $\epsilon(\mathrm{f}, \mathrm{D})$: An error function, designed to reflect the discrepancy between the predicted value $f\left(x_{i}\right)$ and $y_{i} \forall i \quad f\left(x_{i}\right)=\omega_{0}+\omega_{1} \phi_{1}\left(x_{i}\right)$
- Regression problem: Determine a function f^{*} such that $f^{*}(x)$ is the best predictor for y, with respect to D,

$$
\begin{equation*}
f^{*}=\underset{f \in F}{\operatorname{argmin}} \epsilon(f, D) \tag{2}
\end{equation*}
$$

where, F denotes the class of functions over which the optimization is performed

Types of Regression

- Depends on the function class and error function
- Linear Regression : establishes a relationship between dependent variable (Y) and one or more independent variables (X) using a best fit straight line, i.e

$$
\begin{equation*}
Y=a+b * X \tag{3}
\end{equation*}
$$

- Here F is of the form $\sum_{i=1}^{p} w_{i} \phi_{i}(x)$, where ϕ_{i} are called basis functions (or atfributes)
- Problem is to find w^{*} where

$$
\begin{equation*}
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}} \epsilon(\mathbf{w}, \mathbf{D}) \tag{4}
\end{equation*}
$$

- Ridge Regression: A shrinkage parameter (regularization parameter) is added in the error function to reduce discrepancies due to variance \rightarrow Linear regression with good generaliration
- Logistic Regression: Used to model conditional probability of dependent variable given independent variable and is extensively used in classification tasks

$$
\begin{equation*}
\log \frac{p(y \mid x)}{1-p(y \mid x)}=\beta_{0}+\beta * x \tag{5}
\end{equation*}
$$

- Lasso regression, Stepwise regression and many more function class

Different error function

Least Square Solution

- Form of ϵ plays a major role in the accuracy and tractability of the optimization problem
- The squared loss is a commonly used error/loss function. It is the sum of squares of the differences between the actual value and the predicted value

$$
\begin{equation*}
\epsilon(f, D)=\sum_{j=1}^{m}\left(f\left(x_{j}\right)-y_{j}\right)^{2} \tag{6}
\end{equation*}
$$

- The least square solution for linear regression is given by

$$
\begin{equation*}
w^{4}=\arg {\underset{w}{m a n}}^{\left.\sum_{j=1}^{m}\left(\sum_{l=1}^{p} w_{i} \phi_{i}\left(x_{j}\right)-y_{j}\right)^{2}\right), ~\left(x_{j}\right)} \tag{7}
\end{equation*}
$$

assume that some $\phi_{k}\left(x_{j}\right)=1$ to account for offset/bias of linear function

- The minimum value of the squared loss is zero
- If zero were attained at \mathbf{w}^{*}, we would have \qquad
suppose

$$
\sum_{i=1}^{p} w_{i}^{*} \phi_{i}\left(x_{j}\right)=y_{j} \quad \forall j=1 \ldots m
$$

- The minimum value of the squared loss is zero
- If zero were attained at \mathbf{w}^{*}, we would have $\forall u, \phi^{T}\left(x_{u}\right) \mathbf{w}^{*}=\mathbf{y}_{\mathbf{u}}$, or equivalently $\phi \mathbf{w}^{*}=\mathbf{y}$, where

$$
\underline{\phi}=\left[\begin{array}{ccc}
\phi_{1}\left(x_{1}\right) & \ldots & \phi_{p}\left(x_{1}\right) \\
\ldots & \ldots & \ldots \\
\phi_{1}\left(x_{m}\right) & \ldots & \phi_{p}\left(x_{m}\right)
\end{array}\right]
$$

and

$$
\underline{\mathbf{y}}=\left[\begin{array}{c}
y_{1} \\
\ldots \\
y_{m}
\end{array}\right]
$$

- It has a solution if \mathbf{y} is in the column space (the subspace of R^{n} formed by the column vectors) of ϕ : Obtain ω^{*-} using

Gaussian elimination

- The minimum value of the squared loss is zero
- If zero were NOT attainable at \mathbf{w}^{*}, what can be done?

Least squares: "Consider all \widehat{y} 's in column

Geometric Interpretation of Least Square Solution

- Let \mathbf{y}^{*} be a solution in the column space of ϕ
- The least squares solution is such that the distance between \mathbf{y}^{*} and \mathbf{y} is minimized
- Therefore
$y^{*}=\phi \omega$
$\left(y-y^{4}\right)^{\top} \phi=0$

Geometric Interpretation of Least Square Solution

- Let \mathbf{y}^{*} be a solution in the column space of ϕ
- The least squares solution is such that the distance between \mathbf{y}^{*} and y is minimized
- Therefore, the line joining y^{*} to y should be orthogonal to the column space

$$
\begin{gather*}
\phi \mathbf{w}=\mathbf{y}^{*} \tag{8}\\
\left(\mathbf{y}-\mathbf{y}^{*}\right)^{\mathbf{T}} \phi=\mathbf{0} \tag{10}\\
\left(\mathbf{y}^{*}\right)^{\mathbf{T}} \phi=(\mathbf{y})^{\mathbf{T}} \phi \\
\left(\phi^{\top} \phi\right) \omega=\phi^{\top} y \Rightarrow \omega=\left(\phi^{\top} \phi\right)^{-1} \phi^{\top} y
\end{gather*}
$$

$$
\begin{align*}
& (\phi \mathbf{w})^{\mathbf{T}} \phi=\mathbf{y}^{\mathbf{T}} \phi \tag{11}\\
& \mathbf{w}^{\mathbf{T}} \phi^{\mathbf{T}} \phi=\mathbf{y}^{\mathbf{T}} \phi \tag{12}\\
& \phi^{T} \phi \mathbf{w}=\phi^{\mathbf{T}} \mathbf{y} \tag{13}\\
& \mathbf{w}=\left(\phi^{\mathbf{T}} \phi\right)^{-\mathbf{1}} \mathbf{y} \tag{14}
\end{align*}
$$

- Here $\phi^{T} \phi$ is invertible only if ϕ has full column rank

Proof?

Theorem : $\phi^{\top} \phi$ is invertible if and only if ϕ is full column rank Proof :
Given that ϕ has full column rank and hence columns are linearly independent, we have that $\phi \mathbf{x}=\mathbf{0} \Rightarrow \mathbf{x}=\mathbf{0}$
Assume on the contrary that $\phi^{\top} \phi$ is non invertible. Then $\exists \mathbf{x} \neq \mathbf{0}$ such that $\phi^{\top} \phi \mathbf{x}=\mathbf{0}$

$$
\begin{aligned}
& \Rightarrow \mathbf{x}^{\mathbf{T}} \phi^{\mathbf{T}} \phi \mathbf{x}=\mathbf{0} \\
& \Rightarrow(\phi \mathbf{x})^{\mathbf{T}} \phi \mathbf{x}=\mathbf{0} \\
& \quad \Rightarrow \phi \mathbf{x}=\mathbf{0}
\end{aligned}
$$

This is a contradiction. Hence $\phi^{T} \phi$ is invertible if ϕ is full column rank
If $\phi^{\top} \phi$ is invertible then $\phi \mathbf{x}=\mathbf{0}$ implies $\left(\phi^{\top} \phi \mathbf{x}\right)=\mathbf{0}$, which in turn implies $\mathbf{x}=\mathbf{0}$, This implies ϕ has full column rank if $\phi^{\top} \phi$ is invertible. Hence, theorem proved

Figure: Least square solution \mathbf{y}^{*} is the orthogonal projection of y onto column space of ϕ

