Regression
Instructor: Prof. Ganesh Ramakrishnan



Recap

@ Supervised (Classification and Regression) vs Unsupervised
Learning

» Three canonical learning problems

@ What is data and how to predict
» More on this today in the context of regression

@ Squared Error
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Regression

@ Finding correlation between a set of output variables and a set of

input variables So fow swngle owtput vesiacble
Pt VaNaE (x) c
@ Input variables are called independent variables V)

@ Output variables are called dependent variables
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Examples

@ A company wants to how much money they need to spend on
T.V advertising to increase sales to a desired level, say y*

@ They have previous data of form <x;,y;>, where x; is money
spent on advertising and y; are sale figures

@ They now fit the data with a function, lets say linear function
2T gt AN nerensc 50 YeaY .
W Y, You br/p.4—y=ﬁ0+ﬁl*x”\;;up,+%*;\t(1)

nereose DX . : .
and then find the money they need to spend using this function

@ Regression problem is to find the appropriate function and its
coefficients
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Figure: Linear regression on T.V advertising vs sales figure
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What if sales is a non-linear function of
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Formal Definition

e Two sets of variables: x € RV (independent) and y € R*
(dependent)

@ D is a set of m data points: <xq, y1>, <Xo, Vo>, ..., <Xm, Ym>

e (f, D): An error function, designed to reflect the dlscrepanq¥
between the predicted value f(x;) and y; Vi 5Cxe) wo{'wn xi)

HEER
@ Regression problem: Determine a function  such that F xljca-
the best predictor for y, with respect to D,

f* = argmin €(f, D) (2)

feF

where, F denotes the class of functions over which the
optimization is performed
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Types of Regression

@ Depends on the function class and error function

@ Linear Regression : establishes a relationship between dependent
variable (Y) and one or more independent variables (X) using a
best fit straight line, i.e

Y=a+bxX (3)

» Here F is of the form £ wj¢i(x), where ¢; are called basis

functions (6v athibutes) —
» Problem is to find w* where

w* = argmin ¢(w, D) (4)

w
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@ Ridge Regression : A shrinkage parameter (regularization
parameter) is added in the error function to reduce discrepancies

due to variance — [unear Yeg¥ess10M) wi¥h  goad ggm,zc:,l;,_

@ Logistic Regression : Used to model conditional probability of
dependent variable given independent variable and is extensively
used in classification tasks
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Least Square Solution

@ Form of € plays a major role in the accuracy and tractability of
the optimization problem

@ The squared loss is a commonly used error/loss function. It is
the sum of squares of the differences between the actual value
and the predicted value

e(£.0) = S(fix) - )’ (6)

@ The least square solution for linear regression is given by

W arges z(ﬁqu@cp W) 0
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@ The minimum value of the squared loss is zero

o If zero were attained at w*, we would have ....................

Su?;sc éW Slrd)=Y; Wi=-m
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@ The minimum value of the squared loss is zero

@ If zero were attained at w*, we would have Vu, QST(XU)W* = Yu,
or equivalently ¢w* =y, where

dQn YO
L [P el t‘;g,ﬂ:\'l
= L \'a))
= oi(x) . Do) “
and
n
Ym

@ It has a solution if y is in the column space (the subspace of R"
formed by the column vectors) of ¢ ‘Obtann @° usl:é
C(ausS\““ b\\mlnﬂ on
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@ The minimum value of the squared loss is zero
@ If zero were NOT attainable at w*, what can be done?
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Geometric Interpretation of Least Square Solution

@ Let y* be a solution in the column space of ¢

@ The least squares solution is such that the distance between y
and y is minimized alb ‘Jd

@ Therefore............ y‘; ¢ W 0- oTb=0
(v-y)$=0 L

*
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Geometric Interpretation of Least Square Solution

@ Let y* be a solution in the column space of ¢

@ The least squares solution is such that the distance between y*
and y is minimized

@ Therefore, the line joining y* to y should be orthogonal to the
column space

' (8)

////,/f¢wy

¢($w) (y-y)0=0 (9)
=7y \ . .

. (Y) o=(y) "¢ (10)
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(ow)Top=y"¢ (11)

wroTo =yTo (12)
oTow = ¢Ty (13)
w=(¢T¢) "y (14)

@ Here ¢'¢ is invertible only if ¢ has full column rank
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Proof?



Theorem : ¢'¢ is invertible if and only if ¢ is full column rank
Proof :

Given that ¢ has full column rank and hence columns are linearly
independent, we have that px =0=x=0

Assume on the contrary that ¢ ¢ is non invertible. Then 3x # 0
such that ¢7¢x = 0

= xTpTopx =0
= (¢%)Tox = 0
= ¢x =0

This is a contradiction. Hence ¢ "¢ is invertible if ¢ is full column

rank

If ¢7¢ is invertible then ¢x = 0 implies (¢ ¢x) = 0, which in turn
implies x = 0, This implies ¢ has full column rank if ¢"¢ is

invertible. Hence, theorem proved

L TP o 1 )



—
' ' ' ' '
. J A J L J '

Figure: Least square solution y* is the orthogonal projection of y onto

column space of ¢



