Regression Instructor: Prof. Ganesh Ramakrishnan

3

< 🗆 > < 🗗

Recap

- Supervised (Classification and Regression) vs Unsupervised Learning
 - Three canonical learning problems
- What is data and how to predict
 - More on this today in the context of regression
- Squared Error

Agenda

- What is Regression
- Formal Defintion
- Types of Regression
- Least Square Solution
- Geometric Interpretation of least square solution

Regression

- Finding correlation between a set of output variables and a set of so far single autput variable input variables (x)
- Input variables are called *independent variables*
- Output variables are called *dependent variables* •

$$Y=f(x)$$
... Linear regression, f is linear

Examples

- A company wants to how much money they need to spend on T.V advertising to increase sales to a desired level, say y*
- They have previous data of form $\langle x_i, y_i \rangle$, where x_i is money spent on advertising and y_i are sale figures
- They now fit the data with a function, lets say linear function ... To get Δy increase in y, you need $\Delta y/p_1 \leftarrow y = \beta_0 + \beta_1 * x$ $\gamma_1 \approx \beta_0 + \beta_1 + \gamma_1 (1)$ increase in z and then find the money they need to spend using this function
 - Regression problem is to find the appropriate function and its coefficients

We will replace x by $\phi(x)$

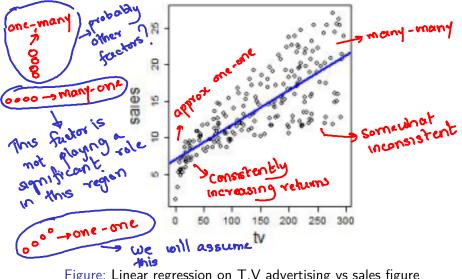


Figure: Linear regression on T.V advertising vs sales figure

< 🗆 🕨

SOC

What if sales is a non-linear function of
advertising? :
$$Y = \beta_0 + \beta_1 \phi(x)$$
 in $x = date for $x = date for$
 $x = date for $x = date for$
 $x = date for $y = \beta_0 + \beta_1 \phi(x)$
 $y = \beta_0 + \beta_1 \phi(x)$
 $y = \beta_0 + \beta_1 \phi(x)$
 $y = \beta_0 + \beta_1 \phi(x) + \beta_2 \phi^2(x) + \dots$
 $y = \beta_0 + \beta_1 \phi(x) + \beta_2 \phi^2(x) + \dots$
 $y = \beta_0 + \beta_1 \phi(x) + \beta_2 \phi^2(x) + \dots$
 $y = \beta_0 + \beta_1 \phi(x) + \beta_2 \phi^2(x) + \dots$
 $y = abte for \beta_1 \beta_2 \dots$$$

Given n observations:

$$\begin{bmatrix} y_{1}, \phi_{1}(x_{1}) \phi_{2}(x_{1}) & \dots & \phi_{p}(x_{1}) \\ y_{2}, \phi_{1}(x_{2}), \phi_{2}(x_{2}) & \dots & \phi_{p}(x_{2}) \\ \vdots \\ y_{n}, \phi_{1}(x_{n}), \phi_{2}(x_{n}) & \dots & \phi_{p}(x_{n}) \end{bmatrix}$$

$$\begin{bmatrix} y_{1}, (x_{1}), \phi_{2}(x_{1}) & \dots & \phi_{p}(x_{n}) \\ \vdots \\ y_{n}, \phi_{1}(x_{n}), \phi_{2}(x_{n}) & \dots & \phi_{p}(x_{n}) \end{bmatrix}$$

$$\begin{bmatrix} \psi_{1}(x_{1}), \phi_{2}(x_{1}) & \dots & \phi_{p}(x_{n}) \\ \vdots \\ y_{n}, \phi_{1}(x_{n}), \phi_{2}(x_{n}) & \dots & \phi_{p}(x_{n}) \end{bmatrix}$$

$$\begin{bmatrix} \psi_{1}(x_{1}), \phi_{2}(x_{1}) & \dots & \phi_{p}(x_{n}) \\ \vdots \\ y_{n}, \phi_{1}(x_{n}), \phi_{2}(x_{n}) & \dots & \phi_{p}(x_{n}) \end{bmatrix}$$

$$\begin{bmatrix} \psi_{1}(x_{1}), \phi_{2}(x_{1}) & \dots & \phi_{p}(x_{n}) \\ \vdots \\ y_{n}, \phi_{1}(x_{n}), \phi_{2}(x_{n}) & \dots & \phi_{p}(x_{n}) \end{bmatrix}$$

$$\begin{bmatrix} \psi_{1}(x_{1}), \phi_{2}(x_{n}) & \dots & \phi_{p}(x_{n}) \\ \vdots \\ y_{n}, \phi_{1}(x_{n}), \phi_{2}(x_{n}) & \dots & \phi_{p}(x_{n}) \end{bmatrix}$$

$$\begin{bmatrix} \psi_{1}(x_{1}), \phi_{2}(x_{n}) & \dots & \phi_{p}(x_{n}) \\ \vdots \\ y_{n}, \phi_{1}(x_{n}), \phi_{2}(x_{n}) & \dots & \phi_{p}(x_{n}) \end{bmatrix}$$

$$\begin{bmatrix} \psi_{1}(x_{1}), \psi_{2}(x_{n}), \psi_{$$

Some more notes. O \$1. \$K can be any attribute that has the potential of linearly influencing (2) (xi), \$\phi_2(xi) -- \$\phi_p(xi) may or may not be functions of each other But certain machine learning approaches are robust to interdependencies among \$1's and certain others are NOT 3 you could use ML workbench such as WERA (warkoto univ, New Zealand) to study \$\overline{}_{s}'s that "linearly influence" Y.

Formal Definition

- Two sets of variables: $x \in \mathcal{R}^N$ (independent) and $y \in \mathcal{R}^k$ (dependent)
- D is a set of m data points: $< x_1$, $y_1 >$, $< x_2$, $y_2 >$, ..., $< x_m$, $y_m >$
- ϵ (f, D): An error function, designed to reflect the discrepancy between the predicted value $f(x_i)$ and $y_i \forall i$ $f(x_i) = \omega_0 + \omega_1 \phi(x_i)$ $f(x_i) = \omega_0 + \omega_1 \phi(x_i)$
- Regression problem: Determine a function f* such that f*(x) is the best predictor for y, with respect to D,

$$f^* = \underset{f \in F}{\operatorname{argmin}} \epsilon(f, D) \tag{2}$$

where, ${\sf F}$ denotes the class of functions over which the optimization is performed

Types of Regression

- Depends on the <u>function class</u> and error <u>function</u>
- Linear Regression : establishes a relationship between dependent variable (Y) and one or more independent variables (X) using a best fit straight line, i.e

$$Y = a + b * X \tag{3}$$

- Here F is of the form $\sum_{i=1}^{p} w_i \phi_i(x)$, where ϕ_i are called basis functions (or attributes)
- Problem is to find w^{*} where

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \epsilon(\mathbf{w}, \mathbf{D}) \tag{4}$$

500

9 / 20

January 12, 2016

- Ridge Regression : A shrinkage parameter (regularization parameter) is added in the error function to reduce discrepancies due to variance -> (inear regression with good generalization
- Logistic Regression : Used to model conditional probability of dependent variable given independent variable and is extensively used in classification tasks

500

10 / 20

January 12, 2016

Least Square Solution

- The squared loss is a commonly used error/loss function. It is the sum of squares of the differences between the actual value and the predicted value

$$\epsilon(f, D) = \sum_{j=1}^{m} (f(x_j) - y_j)^2$$
(6)

• The least square solution for linear regression is given by

$$W^{+} = \arg \min \left\{ \sum_{j=1}^{m} \left(\sum_{i=1}^{p} \sqrt{i} \phi_{i}(x_{ij}) - y_{ij} \right)^{2} \right\}$$
(7)
$$f(x_{ij}) = \frac{1}{1} \left(\sum_{j=1}^{p} \sqrt{i} \phi_{i}(x_{ij}) - y_{ij} \right)^{2} \right)$$
(1)

$$f(x_j) = (w_i, (x_j) + \dots + w_p, (x_j) = Y_j)$$

assume that some $\phi_k(x_j) = 1$
to account for offset/bias
of linear function
The minimum value of the squared loss is zero
If zero were attained at w*, we would have

Suppose
$$\sum_{i=1}^{j} W_i^* \varphi_i(x_j) = Y_j \quad \forall j = 1 - m$$

•

- The minimum value of the squared loss is zero
- If zero were attained at \mathbf{w}^* , we would have $\forall u, \phi^T(x_u)\mathbf{w}^* = \mathbf{y}_u$, or equivalently $\phi \mathbf{w}^* = \mathbf{y}$, where

$$\phi = \begin{bmatrix} \phi_1(x_1) & \dots & \phi_p(x_1) \\ \dots & \dots & \dots \\ \phi_1(x_m) & \dots & \phi_p(x_m) \end{bmatrix}$$
 each row is for an example

and

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \dots \\ y_m \end{bmatrix}$$

• It has a solution if y is in the column space (the subspace of R^n formed by the column vectors) of ϕ : Obtain ω^{-1} using formulation

200

- The minimum value of the squared loss is zero
- $\bullet\,$ If zero were NOT attainable at $\mathbf{w}^*,$ what can be done?

Least squares: (onsider all
$$\hat{y}$$
's in column
space of \hat{y} matrix
m dimensional
space of \hat{y} matrix
• Find that \hat{y} which is as
close as possible to observed
 \hat{y}
column space of \hat{y}
• Thus, \hat{y} in column space st
 $(\hat{y}-\hat{y})$ is \int to column space
is the 1s solution of \hat{y}
 $14/20$

Geometric Interpretation of Least Square Solution

- Let \mathbf{y}^* be a solution in the column space of ϕ
- The least squares solution is such that the distance between y^* and y is minimized

a albill a ab=0 b

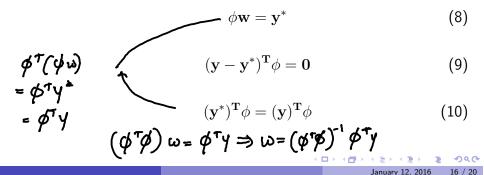
January 12, 2016

500

15 / 20

Geometric Interpretation of Least Square Solution

- $\bullet~{\rm Let}~{\bf y}^*$ be a solution in the column space of ϕ
- The least squares solution is such that the distance between \mathbf{y}^* and \mathbf{y} is minimized
- $\bullet\,$ Therefore, the line joining \mathbf{y}^* to \mathbf{y} should be orthogonal to the column space



$$(\phi \mathbf{w})^{\mathbf{T}} \phi = \mathbf{y}^{\mathbf{T}} \phi \tag{11}$$

$$\mathbf{w}^{\mathbf{T}}\phi^{\mathbf{T}}\phi = \mathbf{y}^{\mathbf{T}}\phi \tag{12}$$

$$\phi^{\mathsf{T}}\phi\mathbf{w} = \phi^{\mathsf{T}}\mathbf{y} \tag{13}$$

$$\mathbf{w} = (\phi^{\mathbf{T}}\phi)^{-1}\mathbf{y} \tag{14}$$

* 다 > * 급 > * 군 >

а.

January 12, 2016

ን ዓ 17 / 20

• Here $\phi^{T}\phi$ is invertible only if ϕ has full column rank

Proof?

< 四 > 《西 > 《 西 > 《 西 > 《 西 > 》 西 :

January 12, 2016

৩০৫

18 / 20

Theorem : $\phi^T \phi$ is invertible if and only if ϕ is full column rank Proof :

Given that ϕ has full column rank and hence columns are linearly independent, we have that $\phi \mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} = \mathbf{0}$

Assume on the contrary that $\phi^T \phi$ is non invertible. Then $\exists x \neq 0$ such that $\phi^T \phi x = 0$

$$\Rightarrow \mathbf{x}^{T} \phi^{T} \phi \mathbf{x} = \mathbf{0}$$
$$\Rightarrow (\phi \mathbf{x})^{T} \phi \mathbf{x} = \mathbf{0}$$
$$\Rightarrow \phi \mathbf{x} = \mathbf{0}$$

This is a contradiction. Hence $\phi^{T}\phi$ is invertible if ϕ is full column rank

If $\phi^T \phi$ is invertible then $\phi \mathbf{x} = \mathbf{0}$ implies $(\phi^T \phi \mathbf{x}) = \mathbf{0}$, which in turn implies $\mathbf{x} = \mathbf{0}$, This implies ϕ has full column rank if $\phi^T \phi$ is invertible. Hence, theorem proved

200

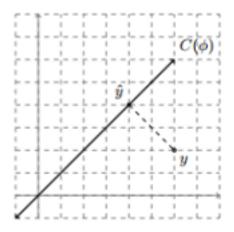


Figure: Least square solution \mathbf{y}^* is the orthogonal projection of y onto column space of ϕ

< □ >