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Regression
Instructor: Prof. Ganesh Ramakrishnan
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Recap

Supervised (Classification and Regression) vs Unsupervised
Learning

▶ Three canonical learning problems

What is data and how to predict
▶ More on this today in the context of regression

Squared Error
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Agenda

What is Regression

Formal Defintion

Types of Regression

Least Square Solution

Geometric Interpretation of least square solution
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Regression

Finding correlation between a set of output variables and a set of
input variables

Input variables are called independent variables

Output variables are called dependent variables
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Examples

A company wants to how much money they need to spend on
T.V advertising to increase sales to a desired level, say y*

They have previous data of form <xi,yi>, where xi is money
spent on advertising and yi are sale figures

They now fit the data with a function, lets say linear function

y = β0 + β1 ∗ x (1)

and then find the money they need to spend using this function

Regression problem is to find the appropriate function and its
coefficients
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Figure: Linear regression on T.V advertising vs sales figure
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What if sales is a non-linear function of

advertising?
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Formal Definition

Two sets of variables: x ∈ RN (independent) and y ∈ Rk

(dependent)

D is a set of m data points: <x1, y1>, <x2, y2>, ..., <xm, ym>

ϵ (f, D): An error function, designed to reflect the discrepancy
between the predicted value f(xi) and yi ∀i

Regression problem: Determine a function f∗ such that f∗(x) is
the best predictor for y, with respect to D,

f∗ = argmin
f∈F

ϵ(f,D) (2)

where, F denotes the class of functions over which the
optimization is performed
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Types of Regression

Depends on the function class and error function

Linear Regression : establishes a relationship between dependent
variable (Y) and one or more independent variables (X) using a
best fit straight line, i.e

Y = a + b ∗ X (3)

▶ Here F is of the form Σp
i=1

wiφi(x), where φi are called basis
functions

▶ Problem is to find w∗ where

w∗ = argmin
w

ϵ(w,D) (4)
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Ridge Regression : A shrinkage parameter (regularization
parameter) is added in the error function to reduce discrepancies
due to variance

Logistic Regression : Used to model conditional probability of
dependent variable given independent variable and is extensively
used in classification tasks

log
p(y|x)

1− p(y|x)
= β0 + β ∗ x (5)

Lasso regression, Stepwise regression and many more
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Least Square Solution

Form of ϵ plays a major role in the accuracy and tractability of
the optimization problem

The squared loss is a commonly used error/loss function. It is
the sum of squares of the differences between the actual value
and the predicted value

ϵ(f,D) = Σ(f(xi)− yi)
2 (6)

The least square solution for linear regression is given by

w∗ = argmin
w

m
j=1(

p

i=1(wiφi(xj)− yj)
2) (7)
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The minimum value of the squared loss is zero

If zero were attained at w∗, we would have ....................
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The minimum value of the squared loss is zero

If zero were attained at w∗, we would have ∀u, φT(xu)w
∗ = yu,

or equivalently φw∗ = y, where

φ =







φ1(x1) ... φp(x1)
... ... ...

φ1(xm) ... φp(xm)







and

y =







y1
...

ym







It has a solution if y is in the column space (the subspace of Rn

formed by the column vectors) of φ
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The minimum value of the squared loss is zero

If zero were NOT attainable at w∗, what can be done?
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Geometric Interpretation of Least Square Solution

Let y∗ be a solution in the column space of φ

The least squares solution is such that the distance between y∗

and y is minimized

Therefore............

January 12, 2016 15 / 20



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Geometric Interpretation of Least Square Solution

Let y∗ be a solution in the column space of φ

The least squares solution is such that the distance between y∗

and y is minimized

Therefore, the line joining y∗ to y should be orthogonal to the
column space

φw = y∗ (8)

(y − y∗)Tφ = 0 (9)

(y∗)Tφ = (y)Tφ (10)
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(φw)Tφ = yTφ (11)

wTφTφ = yTφ (12)

φTφw = φTy (13)

w = (φTφ)−1y (14)

Here φTφ is invertible only if φ has full column rank
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Proof?
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Theorem : φTφ is invertible if and only if φ is full column rank
Proof :
Given that φ has full column rank and hence columns are linearly
independent, we have that φx = 0 ⇒ x = 0

Assume on the contrary that φTφ is non invertible. Then ∃x ̸= 0

such that φTφx = 0

⇒ xTφTφx = 0

⇒ (φx)Tφx = 0

⇒ φx = 0

This is a contradiction. Hence φTφ is invertible if φ is full column
rank
If φTφ is invertible then φx = 0 implies (φTφx) = 0, which in turn
implies x = 0 , This implies φ has full column rank if φTφ is

invertible. Hence, theorem proved
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Figure: Least square solution y∗ is the orthogonal projection of y onto
column space of φ
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