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Regression
Instructor: Prof. Ganesh Ramakrishnan
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Recap

Supervised (Classification and Regression) vs Unsupervised
Learning

▶ Three canonical learning problems
What is data and how to predict

▶ More on this today in the context of regression
Squared Error
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Agenda

What is Regression
Formal Defintion
Types of Regression
Least Square Solution
Geometric Interpretation of least square solution
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Regression

Finding correlation between a set of output variables and a set of
input variables
Input variables are called independent variables
Output variables are called dependent variables
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Examples

A company wants to how much money they need to spend on
T.V advertising to increase sales to a desired level, say y*
They have previous data of form <xi,yi>, where xi is money
spent on advertising and yi are sale figures
They now fit the data with a function, lets say linear function

y = β0 + β1 ∗ x (1)
and then find the money they need to spend using this function
Regression problem is to find the appropriate function and its
coefficients
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Figure: Linear regression on T.V advertising vs sales figure
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What if sales is a non-linear function of
advertising?
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Formal Definition

Two sets of variables: x ∈ RN (independent) and y ∈ Rk

(dependent)
D is a set of m data points: <x1, y1>, <x2, y2>, ..., <xm, ym>
ϵ (f, D): An error function, designed to reflect the discrepancy
between the predicted value f(xi) and yi ∀i
Regression problem: Determine a function f∗ such that f∗(x) is
the best predictor for y, with respect to D,

f∗ = argmin
f∈F

ϵ(f,D) (2)

where, F denotes the class of functions over which the
optimization is performed
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Types of Regression

Depends on the function class and error function
Linear Regression : establishes a relationship between dependent
variable (Y) and one or more independent variables (X) using a
best fit straight line, i.e

Y = a + b ∗ X (3)

▶ Here F is of the form Σp
i=1wiϕi(x), where ϕi are called basis

functions
▶ Problem is to find w∗ where

w∗ = argmin
w

ϵ(w,D) (4)
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Ridge Regression : A shrinkage parameter (regularization
parameter) is added in the error function to reduce discrepancies
due to variance
Logistic Regression : Used to model conditional probability of
dependent variable given independent variable and is extensively
used in classification tasks

log p(y|x)
1− p(y|x) = β0 + β ∗ x (5)

Lasso regression, Stepwise regression and many more
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Least Square Solution

Form of ϵ plays a major role in the accuracy and tractability of
the optimization problem
The squared loss is a commonly used error/loss function. It is
the sum of squares of the differences between the actual value
and the predicted value

ϵ(f,D) =
m∑

j=1

(f(xj)− yj)
2 (6)

The least square solution for linear regression is given by

w∗ = argmin
w

m∑
j=1

(

p∑
i=1

(wiϕi(xj)− yj)
2) (7)
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The minimum value of the squared loss is zero
If zero were attained at w∗, we would have ....................
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The minimum value of the squared loss is zero
If zero were attained at w∗, we would have ∀u, ϕT(xu)w∗ = yu,
or equivalently ϕw∗ = y, where

ϕ =

ϕ1(x1) ... ϕp(x1)
... ... ...

ϕ1(xm) ... ϕp(xm)


and

y =

y1
...
ym


It has a solution if y is in the column space (the subspace of Rn

formed by the column vectors) of ϕ
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The minimum value of the squared loss is zero
If zero were NOT attainable at w∗, what can be done?
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Geometric Interpretation of Least Square Solution

Let y∗ be a solution in the column space of ϕ
The least squares solution is such that the distance between y∗

and y is minimized
Therefore............
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Geometric Interpretation of Least Square Solution

Let y∗ be a solution in the column space of ϕ
The least squares solution is such that the distance between y∗

and y is minimized
Therefore, the line joining y∗ to y should be orthogonal to the
column space

ϕw = y∗ (8)

(y − y∗)Tϕ = 0 (9)

(y∗)Tϕ = (y)Tϕ (10)
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(ϕw)Tϕ = yTϕ (11)

wTϕTϕ = yTϕ (12)

ϕTϕw = ϕTy (13)

w = (ϕTϕ)−1y (14)

Here ϕTϕ is invertible only if ϕ has full column rank
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Proof?
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Theorem : ϕTϕ is invertible if and only if ϕ is full column rank
Proof :
Given that ϕ has full column rank and hence columns are linearly
independent, we have that ϕx = 0 ⇒ x = 0
Assume on the contrary that ϕTϕ is non invertible. Then ∃x ̸= 0
such that ϕTϕx = 0

⇒ xTϕTϕx = 0
⇒ (ϕx)Tϕx = 0

⇒ ϕx = 0

This is a contradiction. Hence ϕTϕ is invertible if ϕ is full column
rank
If ϕTϕ is invertible then ϕx = 0 implies (ϕTϕx) = 0, which in turn
implies x = 0 , This implies ϕ has full column rank if ϕTϕ is
invertible. Hence, theorem proved
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Figure: Least square solution y∗ is the orthogonal projection of y onto
column space of ϕ
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