Regression Instructor: Prof. Ganesh Ramakrishnan

< □ > < 同 > < 回 > < Ξ > < Ξ

э

Recap

- Supervised (Classification and Regression) vs Unsupervised Learning
 - Three canonical learning problems
- What is data and how to predict
 - More on this today in the context of regression
- Squared Error

Agenda

- What is Regression
- Formal Defintion
- Types of Regression
- Least Square Solution
- Geometric Interpretation of least square solution

Regression

- Finding correlation between a set of output variables and a set of input variables
- Input variables are called independent variables
- Output variables are called *dependent variables*

Examples

- A company wants to how much money they need to spend on T.V advertising to increase sales to a desired level, say y*
- They have previous data of form $\langle x_i, y_i \rangle$, where x_i is money spent on advertising and y_i are sale figures
- They now fit the data with a function, lets say linear function

$$y = \beta_0 + \beta_1 * x \tag{1}$$

and then find the money they need to spend using this function

• Regression problem is to find the appropriate function and its coefficients

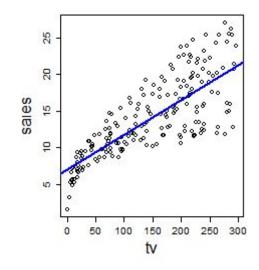


Figure: Linear regression on T.V advertising vs sales figure

< 4 ► >

What if sales is a non-linear function of advertising?

3

< □ > < 同 > < 回 > < 回 > < 回 >

Formal Definition

- Two sets of variables: x ∈ R^N (independent) and y ∈ R^k (dependent)
- D is a set of m data points: $\langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle$, ..., $\langle x_m, y_m \rangle$
- *ϵ* (f, D): An error function, designed to reflect the discrepancy between the predicted value f(x_i) and y_i ∀i
- Regression problem: Determine a function f* such that f*(x) is the best predictor for y, with respect to D,

$$f^* = \underset{f \in F}{\operatorname{argmin}} \epsilon(f, D) \tag{2}$$

< □ > < 同 > < 三 > < 三 >

where, ${\sf F}$ denotes the class of functions over which the optimization is performed

Types of Regression

- Depends on the function class and error function
- Linear Regression : establishes a relationship between dependent variable (Y) and one or more independent variables (X) using a best fit straight line, i.e

$$Y = a + b * X \tag{3}$$

- ► Here F is of the form ∑^p_{i=1} w_iφ_i(x), where φ_i are called basis functions
- Problem is to find w* where

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \ \epsilon(\mathbf{w}, \mathbf{D}) \tag{4}$$

- Ridge Regression : A shrinkage parameter (regularization parameter) is added in the error function to reduce discrepancies due to variance
- Logistic Regression : Used to model conditional probability of dependent variable given independent variable and is extensively used in classification tasks

$$\log \frac{p(y|x)}{1 - p(y|x)} = \beta_0 + \beta * x$$
(5)

• Lasso regression, Stepwise regression and many more

Least Square Solution

- The squared loss is a commonly used error/loss function. It is the sum of squares of the differences between the actual value and the predicted value

$$\epsilon(f, D) = \sum_{j=1}^{m} (f(x_j) - y_j)^2 \tag{6}$$

The least square solution for linear regression is given by

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{\mathbf{j}=1}^{\mathbf{m}} (\sum_{i=1}^{\mathbf{p}} (\mathbf{w}_i \phi_i(\mathbf{x}_j) - \mathbf{y}_j)^2)$$
(7)

- The minimum value of the squared loss is zero
- \bullet If zero were attained at $\mathbf{w}^{*},$ we would have

Image: A matrix

- The minimum value of the squared loss is zero
- If zero were attained at \mathbf{w}^* , we would have $\forall u, \phi^T(x_u)\mathbf{w}^* = \mathbf{y}_u$, or equivalently $\phi \mathbf{w}^* = \mathbf{y}$, where

$$\phi = \begin{bmatrix} \phi_1(\mathbf{x}_1) & \dots & \phi_p(\mathbf{x}_1) \\ \dots & \dots & \dots \\ \phi_1(\mathbf{x}_m) & \dots & \phi_p(\mathbf{x}_m) \end{bmatrix}$$

and

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \dots \\ y_m \end{bmatrix}$$

It has a solution if y is in the column space (the subspace of Rⁿ formed by the column vectors) of φ

- The minimum value of the squared loss is zero
- $\bullet\,$ If zero were NOT attainable at $\mathbf{w}^*,$ what can be done?

Geometric Interpretation of Least Square Solution

- $\bullet~{\rm Let}~{\bf y}^*$ be a solution in the column space of ϕ
- The least squares solution is such that the distance between \mathbf{y}^* and \mathbf{y} is minimized
- Therefore.....

Geometric Interpretation of Least Square Solution

- $\bullet~{\rm Let}~{\bf y}^*$ be a solution in the column space of ϕ
- The least squares solution is such that the distance between \mathbf{y}^* and \mathbf{y} is minimized
- Therefore, the line joining \mathbf{y}^* to \mathbf{y} should be orthogonal to the column space

$$\phi \mathbf{w} = \mathbf{y}^* \tag{8}$$

$$(\mathbf{y} - \mathbf{y}^*)^{\mathbf{T}} \phi = \mathbf{0}$$
(9)

$$(\mathbf{y}^*)^{\mathbf{T}}\phi = (\mathbf{y})^{\mathbf{T}}\phi \tag{10}$$

$$(\phi \mathbf{w})^{\mathbf{T}} \phi = \mathbf{y}^{\mathbf{T}} \phi \tag{11}$$

$$\mathbf{w}^{\mathbf{T}}\phi^{\mathbf{T}}\phi = \mathbf{y}^{\mathbf{T}}\phi \tag{12}$$

$$\phi^{\mathsf{T}}\phi\mathbf{w} = \phi^{\mathsf{T}}\mathbf{y} \tag{13}$$

$$\mathbf{w} = (\phi^{\mathbf{T}}\phi)^{-1}\mathbf{y} \tag{14}$$

• Here $\phi^{T}\phi$ is invertible only if ϕ has full column rank

<ロト < 四ト < 三ト < 三ト

Proof?

Theorem : $\phi^T \phi$ is invertible if and only if ϕ is full column rank Proof :

Given that ϕ has full column rank and hence columns are linearly independent, we have that $\phi \mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} = \mathbf{0}$

Assume on the contrary that $\phi^T \phi$ is non invertible. Then $\exists x \neq 0$ such that $\phi^T \phi x = 0$

$$\Rightarrow \mathbf{x}^{T} \phi^{T} \phi \mathbf{x} = \mathbf{0}$$
$$\Rightarrow (\phi \mathbf{x})^{T} \phi \mathbf{x} = \mathbf{0}$$
$$\Rightarrow \phi \mathbf{x} = \mathbf{0}$$

This is a contradiction. Hence $\phi^{T}\phi$ is invertible if ϕ is full column rank

If $\phi^T \phi$ is invertible then $\phi \mathbf{x} = \mathbf{0}$ implies $(\phi^T \phi \mathbf{x}) = \mathbf{0}$, which in turn implies $\mathbf{x} = \mathbf{0}$, This implies ϕ has full column rank if $\phi^T \phi$ is invertible. Hence, theorem proved

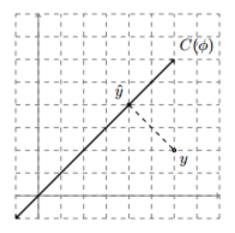


Figure: Least square solution \mathbf{y}^* is the orthogonal projection of y onto column space of ϕ