Regression

Instructor: Prof. Ganesh Ramakrishnan



Recap

@ Supervised (Classification and Regression) vs Unsupervised
Learning

» Three canonical learning problems

@ What is data and how to predict
» More on this today in the context of regression

@ Squared Error
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Agenda

What is Regression
Formal Defintion
Types of Regression

Least Square Solution

Geometric Interpretation of least square solution
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Regression

@ Finding correlation between a set of output variables and a set of
input variables

@ Input variables are called independent variables

@ Output variables are called dependent variables
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Examples

@ A company wants to how much money they need to spend on
T.V advertising to increase sales to a desired level, say y*

@ They have previous data of form <x;,y;>, where x; is money
spent on advertising and y; are sale figures

@ They now fit the data with a function, lets say linear function

y=Po+ b *x (1)
and then find the money they need to spend using this function

@ Regression problem is to find the appropriate function and its
coefficients
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Figure: Linear regression on T.V advertising vs sales figure
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What if sales is a non-linear function of
advertising?



Formal Definition

e Two sets of variables: x € RV (independent) and y € R*
(dependent)

@ D is a set of m data points: <xq, y1>, <Xo, Vo>, ..., <Xm, Ym>

@ ¢ (f, D): An error function, designed to reflect the discrepancy
between the predicted value f(x;) and y; Vi

@ Regression problem: Determine a function f* such that (x) is
the best predictor for y, with respect to D,

f* = argmin €(f, D) (2)

feF

where, F denotes the class of functions over which the
optimization is performed
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Types of Regression

@ Depends on the function class and error function

@ Linear Regression : establishes a relationship between dependent
variable (Y) and one or more independent variables (X) using a
best fit straight line, i.e

Y=a+bxX (3)
» Here F is of the form X, wj¢i(x), where ¢; are called basis
functions

» Problem is to find w* where

w"* = argmin ¢(w, D) (4)

w
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@ Ridge Regression : A shrinkage parameter (regularization
parameter) is added in the error function to reduce discrepancies
due to variance

o Logistic Regression : Used to model conditional probability of
dependent variable given independent variable and is extensively
used in classification tasks

p(ylx)
1 — p(ylx)
@ Lasso regression, Stepwise regression and many more

log =B+ B xx (3)
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Least Square Solution

@ Form of € plays a major role in the accuracy and tractability of
the optimization problem

@ The squared loss is a commonly used error/loss function. It is
the sum of squares of the differences between the actual value
and the predicted value

m

e(f,D) => (flx) — y))” (6)

J=1
@ The least square solution for linear regression is given by

m P

W= argvaﬂin Z(Z(Wﬁ%(&') - y;)?) (7)

j=1 i=1
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@ The minimum value of the squared loss is zero

@ If zero were attained at w*, we would have ....................
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@ The minimum value of the squared loss is zero

o If zero were attained at w*, we would have Vu, qﬁT(xu)w* = Yu,
or equivalently ¢w* =y, where

1(x) o @p(x)
O10m) o Dplom)
and

N
y=|..
Ym
@ It has a solution if y is in the column space (the subspace of R”

formed by the column vectors) of ¢
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@ The minimum value of the squared loss is zero

@ If zero were NOT attainable at w*, what can be done?
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Geometric Interpretation of Least Square Solution

@ Let y* be a solution in the column space of ¢

@ The least squares solution is such that the distance between y*
and y is minimized

@ Therefore............
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Geometric Interpretation of Least Square Solution

@ Let y* be a solution in the column space of ¢

@ The least squares solution is such that the distance between y*
and y is minimized

@ Therefore, the line joining y* to y should be orthogonal to the
column space

pw =y* (8)
(y—y)T¢=0 (9)
) o= (y)"e (10)
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(ow)Top =yT¢ (11)

wroTo =yTo (12)
oTow = ¢Ty (13)
w=(¢T¢) "y (14)

@ Here ¢'¢ is invertible only if ¢ has full column rank
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Theorem : ¢'¢ is invertible if and only if ¢ is full column rank
Proof :

Given that ¢ has full column rank and hence columns are linearly
independent, we have that px =0=x=0

Assume on the contrary that ¢"¢ is non invertible. Then 3x # 0
such that ¢7¢x = 0

= xTpTopx =0
= (¢%)Tox = 0
= ¢x =0

This is a contradiction. Hence ¢’ is invertible if ¢ is full column

rank

If ¢7¢ is invertible then ¢x = 0 implies (¢ ¢x) = 0, which in turn
implies x = 0, This implies ¢ has full column rank if ¢"¢ is

invertible. Hence, theorem proved
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Figure: Least square solution y* is the orthogonal projection of y onto

column space of ¢



