Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 4 - Least Squares Linear Regression



Regression Model

e Training set (this is your data set),

D =< X17Y1 >7 < X27y2 >7 RS < xm7ym >
- Notation (used throughout the course)
- m = number of training examples
- x's = input variables / features
- y’'s = output variable "target” variables
- (x,y) - single training example
- (xi, i) - specific example (it training example)
- iis an index to training set

@ Need to determine parameters w for the function f (x, w)
which minimizes our error function ¢ (f(x, w), D)

w = argmin{s(f(x,w),D)}

w



Linear Regression Model

@ Need to determine w for the linear function
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Least Square Linear Regression Model

w=| . (3)
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wh = argwmin{z (Z widi(xj) — Yj) } (4)
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@ Regression
e Formal Definition
o Examples and Types of Regression
o Least Square Solution
o Role of error/loss function
o Least square solution for linear regression
@ Geometric Interpretation of Least Square Solution
e Theorem : ¢ ¢ is invertible if and only if ¢ is full column

rank



Geometric Interpretation of Least Square Solution

@ Let y* be a solution in the column space of ¢
@ The least squares solution is such that the distance between
) . L

Mu¥e-y* and y is minimized cdheted

w 70 be
q:%“# @ Therefore, theTine joining y* to y should be orthogonal to the

column space

4 ow = y" (6)

/ (y—y")T¢=0 (7)

¢,
) To=(y)"o (8)




(ow)To =yTo (9)

wigTo=yTo (10)
¢Tow =oTy (11)
w=(370) by (12

@ Here ¢ ¢ is invertible only if ¢ has full column rank



Theorem : ¢ ¢ is invertible if and only if ¢ is full column rank

.F .
), JLroof :
023"‘€iven that ¢ has full column rank and hence columns are linearly
independent, we have that px =0=x=10
N
Assume on the contrary that ¢ ¢ is non invertible. Then 3x # 0

such that ¢ ¢x =0 .
\"PV“jc L7 cmhuhc‘\’m

=xT¢pTpx =0
oa=0 ff a=0 = (¢x)Tdpx =0
=o¢x=0

This is a contradiction. Hence ¢7 ¢ is invertible if ¢ is full column
rank

_li’ If ¢T ¢ is invertible then ¢x = 0 implies (¢ ¢x) = 0, which in turn
implies x = 0, This implies ¢ has full column rank if ¢ ¢ is
invertible. Hence, theorem proved



@ Some more questions on the Least Square Linear Regression
Model
@ More generally: How to minimize a function?
o Level Curves and Surfaces
Gradient Vector
Directional Derivative
Hyperplane
Tangential Hyperplane

o Gradient Descent Algorithm



Some questions
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Solving Least Square Linear Regression Model

e Intuitively: Minimize by setting derivative (gradient) to 0 and
find closed form solution.

@ For most optimization problems, finding closed form solution
is difficult

e Even for linear regression (for which closed form solution
exists), are there alternative methods?

o Eg: Consider, y = ¢w,where ¢ is a matrix with full column
rank, the least squares solution, w* = ¢’ ¢) ¢y . Now,
imagine that ¢ is a very large matrix. with say, 100,000
columns and 1,000,000 rows. Computation of closed form
solution might be challenging.

@ How about an iterative method?



Level curves and surfaces
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@ A level curve of a function f(x) is defined as a curve afwng cwe\s

which the value of the function remains unchanged while we o%

change the value of it's argument x. %,

. ?\o""
@ Formally we can define a level curve as :

Le(6) = {7 = <} (13)

where c is a constant.



Level curves and surfaces

@ The image below is an example of different level curves for a
single function

Figure 1: 10 level curves for the function f(x1,x2) = x;€%(Figure 4.12
from https://www.cse.iitb.ac.in/~cs709/notes/
BasicsO0fConvexOptimization.pdf)



Directional Derivatives

@ Directional derivative: Rate at which the function changes at
a given point in a given direction

@ The directional derivative of a function f in the direction of a
unit vector v at a point x can be defined as :

f(x + hv) — f(x)

Dy(f) = lim A (19)
Zh—)O h . - \«._o’c
llﬂb o (15)
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Gradient Vector

TS5 s dwednor of  voagamwn
Awrechonal devvahve
e Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

@ Direction of gradient vector indicates direction of this
maximal directional derivative at that point.

@ The gradient vector of a function f at a point x is defined as:

r Of(x) 7

Dyf56)= TS 6o 7
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Gradient Vector

e Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

@ The gradient vector of a function f at a point x is defined as:

- 0F(x) T
X1
9F(x)
3X2

Vi = . eR" (17)
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@ Thus, at the point of minimum of a differentiable minimization
objective (such as least squares for regression), ...

Necessay: V5 (w)=0. Need fo ven Anat
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Gradient Vector

@ The figure below gives an example of gradient vector

Figure 2: The level curves from Figure 1 along with the gradient vector
at (2, 0). Note that the gradient vector is perpenducular to the level
curve x;e® = 2 at (2, 0)



