Introduction to Machine Learning - CS725
 Instructor: Prof. Ganesh Ramakrishnan
 Lecture 4 - Least Squares Linear Regression

Regression Model

- Training set (this is your data set),

$$
\mathcal{D}=<\mathbf{x}_{1}, \mathbf{y}_{1}>,<\mathbf{x}_{2}, \mathbf{y}_{2}>, . .,<\mathbf{x}_{\mathbf{m}}, \mathbf{y}_{\mathbf{m}}>
$$

- Notation (used throughout the course)
- $m=$ number of training examples
- $\mathbf{x}^{\prime} \mathbf{s}=$ input variables / features
- $\mathbf{y}^{\prime} \mathbf{s}=$ output variable "target" variables
- (\mathbf{x}, \mathbf{y}) - single training example
- ($\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}$) - specific example ($\mathrm{i}^{\text {th }}$ training example)
- i is an index to training set
- Need to determine parameters \mathbf{w} for the function $f(\mathbf{x}, \mathbf{w})$ which minimizes our error function $\varepsilon(f(\mathbf{x}, \mathbf{w}), \mathcal{D})$

$$
\mathbf{w}^{*}=\underset{\mathbf{w}}{\arg \min }\{\varepsilon(\mathbf{f}(\mathbf{x}, \mathbf{w}), \mathcal{D})\}
$$

Linear Regression Model

- Need to determine \mathbf{w} for the linear function
 function $\underline{\varepsilon(f(\mathbf{x}, \mathbf{w}), \mathcal{D}) \longrightarrow \text { unspect fied }}$
- ϕ_{i} 's are the basis functions, and let

$$
\phi=\left[\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{1}\right) & \ldots \ldots & \phi_{p}\left(\mathbf{x}_{\mathbf{1}}\right) \tag{1}\\
\cdot & & & \\
\cdot & & & \\
\phi_{1}\left(\mathbf{x}_{\mathbf{m}}\right) & \phi_{2}\left(\mathbf{x}_{\mathbf{m}}\right) & \ldots \ldots & \phi_{p}\left(\mathbf{x}_{\mathbf{m}}\right)
\end{array}\right]
$$

-

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \tag{2}\\
y_{2} \\
\cdot \\
\cdot \\
y_{m}
\end{array}\right]
$$

Least Square Linear Regression Model

-

$$
\mathbf{w}=\left[\begin{array}{c}
w_{1} \tag{3}\\
w_{2} \\
\cdot \\
\cdot \\
w_{p}
\end{array}\right]
$$

-

$$
\begin{equation*}
\mathbf{w}^{*}=\underset{\mathbf{w}}{\arg \min }\left\{\sum_{\mathbf{j}=\mathbf{1}}^{\mathbf{m}}\left(\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{p}} \mathbf{w}_{\mathbf{i}} \phi_{\mathbf{i}}\left(\mathbf{x}_{\mathbf{j}}\right)-\mathbf{y}_{\mathbf{j}}\right)^{\mathbf{2}}\right\} \tag{4}
\end{equation*}
$$

Form of errot
frodso
Sperfed
value of ereor

- Regression
- Formal Definition
- Examples and Types of Regression
- Least Square Solution
- Role of error/loss function
- Least square solution for linear regression
- Geometric Interpretation of Least Square Solution
- Theorem : $\phi^{T} \phi$ is invertible if and only if ϕ is full column rank

Geometric Interpretation of Least Square Solution

- Let \boldsymbol{y}^{*} be a solution in the column space of ϕ
- The least squares solution is such that the distance between
- Therefore, the line joining \mathbf{y}^{*} to \mathbf{y} should be orthogonal to the column space

$$
\begin{gather*}
\phi \mathbf{w}=\mathbf{y}^{*} \tag{6}\\
\left(\mathbf{y}-\mathbf{y}^{*}\right)^{\boldsymbol{\top}} \phi=\mathbf{0} \tag{7}\\
\left(\mathbf{y}^{*}\right)^{\boldsymbol{\top}} \phi=(\mathbf{y})^{\boldsymbol{\top}} \phi \tag{8}
\end{gather*}
$$

$$
\begin{align*}
& (\phi \mathbf{w})^{\mathbf{T}} \phi=\mathbf{y}^{\mathbf{\top}} \phi \tag{9}\\
& \mathbf{w}^{\mathbf{T}} \phi^{\mathbf{T}} \phi=\mathbf{y}^{\mathbf{T}} \phi \tag{10}\\
& \phi^{\top} \phi \mathbf{w}=\phi^{\mathbf{T}} \mathbf{y} \tag{11}\\
& \mathbf{w}=\left(\phi^{\mathbf{T}} \phi\right)^{-\mathbf{1}} \boldsymbol{b}^{\mathbf{T}} \mathbf{y} \tag{12}
\end{align*}
$$

- Here $\phi^{T} \phi$ is invertible only if ϕ has full column rank

Theorem : $\phi^{T} \phi$ is invertible if and only if ϕ is full column rank Proof:
Given that ϕ has full column rank and hence columns are linearly independent, we have that $\phi \mathbf{x}=\mathbf{0} \Rightarrow \mathbf{x}=\mathbf{0}$
Assume on the contrary that $\phi^{\top} \phi$ is non invertible. Then $\exists \mathbf{x} \neq \mathbf{0}$ such that $\phi^{T} \phi \mathbf{x}=\mathbf{0}$

$$
\Rightarrow \mathbf{x}^{\boldsymbol{\top}} \phi^{\boldsymbol{\top}} \phi \mathbf{x}=\mathbf{0}
$$

$a^{\top} a=0$ iff $a=0 \longrightarrow(\phi \mathbf{x})^{\top} \phi \mathbf{x}=\mathbf{0}$.
This is a contradiction. Hence $\phi^{T} \phi$ is invertible if ϕ is full column rank
if If $\phi^{T} \phi$ is invertible then $\phi \mathbf{x}=\mathbf{0}$ implies $\left(\phi^{T} \phi \mathbf{x}\right)=\mathbf{0}$, which in turn implies $\mathbf{x}=\mathbf{0}$, This implies ϕ has full column rank if $\phi^{T} \phi$ is invertible. Hence, theorem proved

Agenda

- Some more questions on the Least Square Linear Regression Model
- More generally: How to minimize a function?
- Level Curves and Surfaces
- Gradient Vector
- Directional Derivative
- Hyperplane
- Tangential Hyperplane
- Gradient Descent Algorithm

If A is p.d then all $\lambda(A)>0 \Rightarrow A x=0$ has only $x=0$ as solution, because if $\exists x \neq 0$ set $A x=0$ then $\lambda=0$ will be an eigenvalue of $A(12 \quad A x=\lambda x)$
$\Rightarrow A$ must be invertible - So suffices to check, that $\phi^{\top} \phi$ has no zero eigenvalues

- What is the relationship between positive definiteness and invertibility? $\rightarrow x^{\top}\left(\phi^{\top} \phi\right) x=\|\phi x\|_{2}^{2} \geqslant 0 \Rightarrow$ All $\lambda\left(\phi^{\top} \phi\right) \geqslant 0$
- When is ϕ not full column rank? What are associated problems and fixes? \rightarrow Eg: if $m<p_{1}, \phi_{i}(x)=\phi_{j}(x) \forall x$
- How to find a solution if ϕ is not full column rank?

Fin Select only a subset of $\phi_{i}^{\prime \prime}$ \& drop the rest st subset is linearly independent Problem: 2^{n} subsets to explore !?
Algos for greedily selecting ϕ_{i} to include or exclude Ag: Infogain (ϕ_{i} attributes selected so far) followed by
(2) Modify the objective being minimized

Modifying objective?

$$
\omega^{x}=\underset{\omega}{\operatorname{argmin}} \sum_{j=1}^{m}\left[\left(\sum_{i=1}^{p} \phi_{i}\left(x_{j}\right) \omega_{i}\right)-y_{j}\right]^{2}
$$

now mater
space of
$=\operatorname{argmin}\|\phi \omega-y\|^{2}$ space of st $\Omega(\omega) \leq k$
Eg: $\Omega(w)=$ 井 of non-zero w_{i} 's
ie Least squares regression st not more than k W's are $\neq 0$ ie not more than $k \phi_{i}$'s that are "effective"

3 solns \rightarrow (1) feature selection on ϕ 's to give ϕ_{s}, followed by $\omega^{*}=\left(\phi_{s}^{*} \phi_{s}\right)^{-1} \phi_{s}^{\top} y$
(2)

$$
\begin{array}{r}
\omega^{*}=\underset{\omega}{\operatorname{argmin}}\|\phi \omega-y\|^{2} \\
s^{\prime} t \quad \Omega(\omega) \leq \xi
\end{array}
$$

(3) $\phi^{\top} \phi \omega^{\omega}=\phi^{\top} y$

H/w problem: Based on diff inequalities between P \& m, find cases where this equation has (a) No solution (b) one solution and (c) multiple solutions

Solving Least Square Linear Regression Model

- Intuitively: Minimize by setting derivative (gradient) to 0 and find closed form solution.
- For most optimization problems, finding closed form solution is difficult
- Even for linear regression (for which closed form solution exists), are there alternative methods?
- Eg: Consider, $\mathbf{y}=\phi \mathbf{w}$,where ϕ is a matrix with full column rank, the least squares solution, $\left.\mathbf{w}^{*}=\phi^{T} \phi\right)^{-1} \phi^{T} \mathbf{y}$. Now, imagine that ϕ is a very large matrix. with say, 100,000 columns and 1,000,000 rows. Computation of closed form solution might be challenging.
- How about an iterative method?

Level curves and surfaces

Eg: $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$

- A level curve of a function $\mathbf{f}(\mathbf{x})$ is defined as a curve along circles which the value of the function remains unchanged while we change the value of it's argument x.
- Formally we can define a level curve as:

$$
\begin{equation*}
L_{c}(\mathbf{f})=\{\underline{\mathbf{x}} \mid \mathbf{f}(\mathbf{x})=\mathbf{c}\} \tag{13}
\end{equation*}
$$

where c is a constant.

Level curves and surfaces

- The image below is an example of different level curves for a single function

Figure 1: 10 level curves for the function $\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)=\mathbf{x}_{\mathbf{1}} \mathbf{e}^{\mathbf{x}_{2}}$ (Figure 4.12 from https://www.cse.iitb.ac.in/~cs709/notes/ BasicsOfConvexOptimization.pdf)

Directional Derivatives

- Directional derivative: Rate at which the function changes at a given point in a given direction
- The directional derivative of a function \underline{f} in the direction of a unit vector \underline{v} at a point \boldsymbol{x} can be defined as :

$$
\begin{align*}
& D_{\mathbf{v}}(f)=\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+\mathbf{h v})-\mathbf{f}(\mathbf{x})}{h} \text { is reacted } \tag{14}\\
& \text { traversed } v \mathbf{v} \|=\mathbf{v} \rightarrow \text { as a unit } \tag{15}\\
& \text { along } v
\end{align*}
$$

Distance traversed

Gradient Vector
∇f is direction of maximum
directional derivative

- Magnitude (euclidean norm) of gradient vector at any point indicates maximum value of directional derivative at that point
- Direction of gradient vector indicates direction of this maximal directional derivative at that point.
- The gradient vector of a function f at a point \mathbf{x} is defined as:

$$
\begin{align*}
& D_{V}(f(x))=\nabla^{\top} f(x) v \tag{16}\\
& V \\
& \text { By Cauchy Schwarz } \quad \nabla f_{x^{*}}=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\cdot \\
\text { neg, } D_{V}(f(x)) \text { is max } \\
\text { when } V \text { is in the direction } \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right] \epsilon \mathbb{R}^{n} \\
& \text { if (x) }
\end{align*}
$$ of $\nabla f(x)$

Gradient Vector

- Magnitude (euclidean norm) of gradient vector at any point indicates maximum value of directional derivative at that point
- The gradient vector of a function f at a point \mathbf{x} is defined as:

$$
\nabla f_{\mathbf{x}^{*}}=\left[\begin{array}{c}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} \tag{17}\\
\frac{\partial f(\mathbf{x})}{\partial x_{2}} \\
\cdot \\
\cdot \\
\frac{\partial f(\mathbf{x})}{\partial x_{n}}
\end{array}\right] \epsilon \mathbb{R}^{n}
$$

- Thus, at the point of minimum of a differentiable minimization objective (such as least squares for regression),
Necessary: $\nabla \mathcal{E}\left(\omega^{*}\right)=$ O. Need to verify that by solving this eqn for lost squares regression, we get

Gradient Vector

- The figure below gives an example of gradient vector

Figure 2: The level curves from Figure 1 along with the gradient vector at $(2,0)$. Note that the gradient vector is perpenducular to the level curve $x_{1} e^{x_{2}}=2$ at $(2,0)$

