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Lecture 4 - Least Squares Linear Regression



Regression Model

Training set (this is your data set),
D =< x1, y1 >,< x2, y2 >, .., < xm, ym >

- Notation (used throughout the course)
- m = number of training examples
- x′s = input variables / features
- y′s = output variable ”target” variables
- (x, y) - single training example
- (xi, yi) - specific example (ith training example)
- i is an index to training set

Need to determine parameters w for the function f (x,w)
which minimizes our error function ε (f (x,w),D)

w∗ = arg min
w

{
ε (f(x,w),D)

}



Linear Regression Model

Need to determine w for the linear function
f (x,w) =

∑p
i=1 wiφi (xj) = φw which minimizes our error

function ε (f (x,w),D)

φi ’s are the basis functions, and let

φ =


φ1(x1) φ2(x1) ...... φp(x1)
.
.

φ1(xm) φ2(xm) ...... φp(xm)

 (1)

y =


y1
y2
.
.
ym

 (2)



Least Square Linear Regression Model

w =


w1

w2

.

.
wp

 (3)

w∗ = arg min
w

{ m∑
j=1

(
p∑

i=1

wiφi(xj)− yj

)2}
(4)

ε = min
w

(
wTφTφw − 2yTφw + yTy

)
(5)



Recap

Regression
Formal Definition
Examples and Types of Regression

Least Square Solution

Role of error/loss function
Least square solution for linear regression

Geometric Interpretation of Least Square Solution

Theorem : φTφ is invertible if and only if φ is full column
rank



Geometric Interpretation of Least Square Solution

Let y∗ be a solution in the column space of φ

The least squares solution is such that the distance between
y∗ and y is minimized

Therefore, the line joining y∗ to y should be orthogonal to the
column space

φw = y∗ (6)

(y − y∗)Tφ = 0 (7)

(y∗)Tφ = (y)Tφ (8)



(φw)Tφ = yTφ (9)

wTφTφ = yTφ (10)

φTφw = φTy (11)

w = (φTφ)−1y (12)

Here φTφ is invertible only if φ has full column rank



Theorem : φTφ is invertible if and only if φ is full column rank
Proof :
Given that φ has full column rank and hence columns are linearly
independent, we have that φx = 0⇒ x = 0
Assume on the contrary that φTφ is non invertible. Then ∃x 6= 0
such that φTφx = 0

⇒ xTφTφx = 0
⇒ (φx)Tφx = 0
⇒ φx = 0

This is a contradiction. Hence φTφ is invertible if φ is full column
rank
If φTφ is invertible then φx = 0 implies (φTφx) = 0, which in turn
implies x = 0 , This implies φ has full column rank if φTφ is
invertible. Hence, theorem proved



Agenda

Some more questions on the Least Square Linear Regression
Model

More generally: How to minimize a function?

Level Curves and Surfaces
Gradient Vector
Directional Derivative
Hyperplane
Tangential Hyperplane

Gradient Descent Algorithm



Some questions

What is the relationship between positive definiteness and
invertibility?

When is φ not full column rank? What are associated
problems and fixes?

How to find a solution if φ is not full column rank?



Solving Least Square Linear Regression Model

Intuitively: Minimize by setting derivative (gradient) to 0 and
find closed form solution.

For most optimization problems, finding closed form solution
is difficult

Even for linear regression (for which closed form solution
exists), are there alternative methods?

Eg: Consider, y = φw,where φ is a matrix with full column
rank, the least squares solution, w∗ = φTφ)−1φTy . Now,
imagine that φ is a very large matrix. with say, 100,000
columns and 1,000,000 rows. Computation of closed form
solution might be challenging.

How about an iterative method?



Level curves and surfaces

A level curve of a function f(x) is defined as a curve along
which the value of the function remains unchanged while we
change the value of it’s argument x.

Formally we can define a level curve as :

Lc(f) =

{
x|f(x) = c

}
(13)

where c is a constant.



Level curves and surfaces

The image below is an example of different level curves for a
single function

Figure 1: 10 level curves for the function f(x1, x2) = x1ex
2 (Figure 4.12

from https://www.cse.iitb.ac.in/~cs709/notes/

BasicsOfConvexOptimization.pdf)

https://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf
https://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf


Directional Derivatives

Directional derivative: Rate at which the function changes at
a given point in a given direction

The directional derivative of a function f in the direction of a
unit vector v at a point x can be defined as :

Dv(f ) = lim
h→0

f (x + hv)− f(x)

h
(14)

||v|| = 1 (15)



Gradient Vector

Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

Direction of gradient vector indicates direction of this
maximal directional derivative at that point.

The gradient vector of a function f at a point x is defined as:

∇fx∗ =


∂f (x)
∂x1
∂f (x)
∂x2
.
.

∂f (x)
∂xn

 εRn (16)



Gradient Vector

Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

The gradient vector of a function f at a point x is defined as:

∇fx∗ =


∂f (x)
∂x1
∂f (x)
∂x2
.
.

∂f (x)
∂xn

 εRn (17)

Thus, at the point of minimum of a differentiable minimization
objective (such as least squares for regression), ....



Gradient Vector

The figure below gives an example of gradient vector

Figure 2: The level curves from Figure 1 along with the gradient vector
at (2, 0). Note that the gradient vector is perpenducular to the level
curve x1e

x2 = 2 at (2, 0)



Hyperplanes

A hyperplane in an n-dimensional Euclidean space is a flat,
n-1 dimensional subset of that space that divides the space
into two disconnected parts.

Technically, a hyperplane is a set of points whose direction
w.r.t. a point p is orthogonal to a vector v.

Formally:

Hv,p =

{
q | (p− q)Tv = 0

}
(18)



Tangential Hyperplanes

There are two definitions of tangential hyperplane (THx∗) to level
surface (Lf (x∗)(f )) of f at x∗ :

Plane consisting of all tangent lines at x∗ to any parametric
curve c(t) on level surface.

Plane orthogonal to the gradient vector at x∗.

THx∗ =

{
p | (p− x∗)T∇f(x∗) = 0

}
(19)



Gradient Descent Algorithm

Gradient descent is based on the observation that if the
multi-variable function F(x ) is defined and differentiable in a
neighborhood of a point a , then F(x ) decreases fastest if one
goes from a in the direction of the negative gradient of F at a ,i.e.
-∇ F(a ).
Therefore,

∆w(k) = − ∇ε(w(k)) from equation (5)

Hence,
w(k+1) = w(k) + 2t(k)(φTy − φTφw(k)) (20)



Gradient Descent Algorithm

Find starting point w(0)εD
∆wk = −∇ε(w(k))

Choose a step size t(k) > 0 using exact or backtracking ray
search.

Obtain w(k+1) = w(k) + t(k)∆w(k).

Set k = k + 1. until stopping criterion
(such as ‖∇ε(x(k+1)) ‖≤ ε) is satisfied



Gradient Descent Algorithm

Exact line search algorithm to find t(k)

The line search approach first finds a descent direction along
which the objective function f will be reduced and then
computes a step size that determines how far x should move
along that direction.

In general,

t(k) = arg min
t

f
(

w(k+1)
)

(21)

Thus,

t(k) = arg min
t

(
w(k) + 2t

(
φTy − φTφw(k)

))
(22)



Example of Gradient Descent Algorithm

Figure 3: A red arrow originating at a point shows the direction of the
negative gradient at that point. Note that the (negative) gradient at a
point is orthogonal to the level curve going through that point. We see
that gradient descent leads us to the bottom of the bowl, that is, to the
point where the value of the function F is minimal. Sources: Wikipidea


