Convex Optimization, Constrained Optimization

and Regression
Instructor: Prof. Ganesh Ramakrishnan
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Definition of Convex Sets and Convex Functions

Definition of convex sets and convex functions (Cite

Definition 32 and 35)[1]
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Figure: Examples of a convex set (a) and a non-convex set (b) Cite:
http://cs229.stanford.edu/section/cs229-cvxopt. pdf
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A set C is convex if, for any x,y € Cand § € Rand 0 <0 <1,



Example of a Convex Set

Hpv= {‘l\ (p-9'v= O}

Vendy by: 9. Hpy 1&%991 -P(\’B)ZSHN
(b-4FveO (p-qayv=0 - -.

To prove : Verify that a hyperplan IS a convex set.
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Proof

@ A Hyperplane H is defined as {x|a’x = b,a # 0}

@ Let x and y be vectors that belong to the hyperplane

@ Since they belong to the hyperplane, a’x = b anda’y = b

@ In order to prove the convexity of the set we must show that :

Ox+ (1 —0)y € H, where 6 € [0,1] (2)

@ In particular, it will belong to the hyperplane if it's true that :

a’(bx+(1—-0)y) = b (3)
— a'fx+a’(l1-0y = b (4)
— fa’x+(1—0a'y = b (5)

@ And, we also have a’x = b and a’y = b. Hence
0b+ (1 — 0)b = b. [Hence Proved] So a hyperplane is a convex
set.
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Definition of Convex Sets and Convex Functions

.
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Figure: A sample convex function b

s A0x+ (1—0)y) < 0fx) + (1 — 0)fly) (6)
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Example of a Convex Function

3 WY
Q. Is ||¢pw — y]||* convex? (\r\ u)) IO QQD &‘\\ >

»
@ To check this, we have (Cite : Theorem 75)1 Is this

practical? * g_;@o's 2 ,S;(\Dj—\' 'Q'rf W) (\JD ‘DB )JUO w'

@ Instead, we would use (C1te : Theorem 79)2 to check for the

convexity of our function ! q"’,?(:o) A ®) C? S- d\\ >d W

@ So the condition that has our focus is -

V2(w*) is positive semi — def/n/te ifVx # 0, XTVZf x>0

e \r-\ (7)
@ We have, \s Aw@b \\C f
QNN \ V2 (8)

@ So, ||pw — y|| is convex, since the domain for w is R" and is
convex

1¢s709/notes/Basics0fConvexOptimization.pdf

2¢s709/notes/Basics0fConvexOptimization.pdf
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Strict Convexity

& convex bu¥ N1
S\wmicu conves

Q. When is f(x) (strictly) convex?

Al Iff fiox + (1 —0)y) < (<) 0f(x) + (1 = 0)f(y) for all 0 € [0,1]
and for all x,y € dmn(f)

A2. OR Iff V2f(x) is positive semi-definite (definite) for all

x € dmn(f)
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Strict Convexity \/\/\/

Q. When is f(x) (strictly) convex?

AL. Iff fi0x + (1— 0)y) < (<) 0fx) + (1 — O)fy) for all 6 € [0, 1]
and for all x,y € dmn(f)

A2. OR Iff V2f(x) is positive semi-definite (definite) for all

x € dmn(f) 3}0

Q. Is||¢w — y]||® strictly convex? w\&\ K

A. Iff ¢ has full column rank. STy &
NG A

oS © 4"\

To prove: If a function is convex, any point of local minima = point

of global minima J

Proof - (Cite : Theorem 69)3 “ck \N')\ wﬁ°"
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3¢s709/notes/Basics0fConvexOptimization.pdf
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Theorem

To prove : If a function is strictly convex, it has a unique point of
global minima

Proof - (Cite : Theorem 70)*

Since ||pw — y||* is strictly convex for linearly independent ¢,

VAw") =0 forw" = (67¢)"'¢"y (9)

Thus, w* is a point of global minimum. One can also find a solution
to (¢T¢pw = ¢"y) by Gauss elimination.

4cs709/notes/Basics0fConvexOptimization.pdf
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Redundant ¢ and Overfitting

@ What do you expect in experiments if ¢ had redundancy"

ot gt
W
Mnra-inee!
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Example of linearly correlated features

@ Example where ¢ doesn’t have a full column rank,
sawne

Xlx% 1X?
X2X%X§X% (10)

Xn Xo X %

@ This is the simplest form of linear correlation of features.
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Redundant ¢ and Overfitting
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Figure: train-RMS and test-RMS values vs t(degree of polynomial) graph

@ Too many bends (t=9 onwards) in curve = high values of some
ws
@ Train and test errors differ significantly
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Homework:
Explain why

the error on the train data reduces as the degree

decrease until degree of 77

—Now-explair
degree of 7

+why the train-continues-to remain low even beyond

whereas the test data starts increasing now.




