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Convex Optimization, Constrained Optimization
and Regression

Instructor: Prof. Ganesh Ramakrishnan
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Agenda

Definition of Convex Sets and Functions

Example of Convex Set

Example of Convex Function

Theorem related to Convex Functions

Overfitting

Convex Optimization Problems

Next Lecture
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Definition of Convex Sets and Convex Functions
Definition of convex sets and convex functions (Cite :

Definition 32 and 35)[1]

Figure: Examples of a convex set (a) and a non-convex set (b) Cite:
http://cs229.stanford.edu/section/cs229-cvxopt.pdf

A set C is convex if, for any x,y ∈ C and θ ∈ ℜ and 0 ≤ θ ≤ 1,

θx + (1− θ)x ∈ C (1)
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Example of a Convex Set

To prove : Verify that a hyperplane is a convex set.
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Proof

A Hyperplane H is defined as {x|aTx = b, a ̸= 0}

Let x and y be vectors that belong to the hyperplane

Since they belong to the hyperplane, aTx = b and aTy = b

In order to prove the convexity of the set we must show that :

θx + (1− θ)y ∈ H, where θ ∈ [0, 1] (2)

In particular, it will belong to the hyperplane if it’s true that :

aT(θx + (1− θ)y) = b (3)

=⇒ aTθx + aT(1− θ)y = b (4)

=⇒ θaTx + (1− θ)aTy = b (5)

And, we also have aTx = b and aTy = b. Hence
θb + (1− θ)b = b. [Hence Proved] So a hyperplane is a convex
set.
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Definition of Convex Sets and Convex Functions

Figure: A sample convex function

∴ f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) (6)
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Example of a Convex Function
Q. Is ||φw − y||2 convex?
A.

To check this, we have (Cite : Theorem 75)1. Is this
practical?

Instead, we would use (Cite : Theorem 79)2 to check for the
convexity of our function

So the condition that has our focus is -

∇2f(w∗) is positive semi − definite, if ∀x ̸= 0, xT∇2f(w∗)x ≥ 0
(7)

We have,
∇2f(w) = 2φTφ (8)

So, ∥φw − y∥2 is convex, since the domain for w is Rn and is
convex

1cs709/notes/BasicsOfConvexOptimization.pdf
2cs709/notes/BasicsOfConvexOptimization.pdf
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Strict Convexity

Q. When is f(x) (strictly) convex?
A1. Iff f(θx + (1− θ)y) ≤ (<) θf(x) + (1− θ)f(y) for all θ ∈ [0, 1]
and for all x,y ∈ dmn(f)
A2. OR Iff ∇2f(x) is positive semi-definite (definite) for all
x ∈ dmn(f)
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Strict Convexity

Q. When is f(x) (strictly) convex?
A1. Iff f(θx + (1− θ)y) ≤ (<) θf(x) + (1− θ)f(y) for all θ ∈ [0, 1]
and for all x,y ∈ dmn(f)
A2. OR Iff ∇2f(x) is positive semi-definite (definite) for all
x ∈ dmn(f)
Q. Is ∥φw − y∥2 strictly convex?
A. Iff φ has full column rank.

To prove: If a function is convex, any point of local minima ≡ point
of global minima
Proof - (Cite : Theorem 69)3

3cs709/notes/BasicsOfConvexOptimization.pdf
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Theorem

To prove : If a function is strictly convex, it has a unique point of
global minima
Proof - (Cite : Theorem 70)4

Since ∥φw − y∥2 is strictly convex for linearly independent φ,

∇f(w∗) = 0 for w∗ = (φTφ)−1φTy (9)

Thus, w∗ is a point of global minimum. One can also find a solution
to (φTφw = φTy) by Gauss elimination.

4cs709/notes/BasicsOfConvexOptimization.pdf
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Redundant φ and Overfitting

What do you expect in experiments if φ had redundancy?
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Example of linearly correlated features

Example where φ doesn’t have a full column rank,

φ =















x1 x2
1

x2
1

x3
1

x2 x2
2

x2
2

x3
2

...
...

...
...

xn x2
n

x2
n

x3
n















(10)

This is the simplest form of linear correlation of features.
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Redundant φ and Overfitting

Figure: train-RMS and test-RMS values vs t(degree of polynomial) graph

Too many bends (t=9 onwards) in curve ≡ high values of some
w′

i
s

Train and test errors differ significantly
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Homework: 
Explain why the error on the train data reduces as the degree 
increases until 7. Why does the error on the test data also 
decrease until degree of 7? 

Now explain why the train continues to remain low even beyond 
degree of 7 whereas the test data starts increasing now. 
 


