Convex Optimization, Constrained Optimization and Regression
 Instructor: Prof. Ganesh Ramakrishnan

Agenda
So far, conditions such as: $\nabla f\left(\omega^{*}\right)=0$ $012 \nabla^{2} f\left(\omega^{*}\right)>0$ were

- Definition of Convex Sets and Functions conditions for
- Example of Convex Set
- Example of Convex Function "/ocal" min/max
- Theorem related to Convex Functions
- Overfitting
- Convex Optimization Problems

Global \min / \max

- Next Lecture

Convex combinations lie within the same

Definition of Convex Sets and Convex Functions

 Definition of convex sets and convex functions (Cite : Definition 32 and 35) [1]

Figure: Examples of a convex set (a) and a non-convex set (b) Cite: http://cs229.stanford.edu/section/cs229-cvxopt.pdf

A set C is convex if, for any $x, y \in C$ and $\theta \in \Re$ and $0 \leq \theta \leq 1$,

$$
\begin{equation*}
\theta x+(1-\theta) y \in C \tag{1}
\end{equation*}
$$

Example of a Convex Set

$$
H_{p, v}=\left\{q \mid(p-q)^{\top} v=0\right\}
$$

Vensy by: $q_{1} \in H_{p_{1}, v} q_{2} \in H_{p_{1}, v} \Rightarrow \theta q_{1}+(1-\theta) q_{2} \in H_{p_{1}, ~}$
$\left(p-q_{1}\right)^{\top} v=0 \quad\left(p-q_{2}\right)^{\top} v=0 \Rightarrow$
To prove: Verify that a hyperplane is a convex set.

Proof

- A Hyperplane \mathcal{H} is defined as $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=b, \mathbf{a} \neq \mathbf{0}\right\}$
- Let \mathbf{x} and \mathbf{y} be vectors that belong to the hyperplane
- Since they belong to the hyperplane, $\mathbf{a}^{T} \mathbf{x}=b$ and $\mathbf{a}^{T} \mathbf{y}=b$
- In order to prove the convexity of the set we must show that:

$$
\begin{equation*}
\theta \mathbf{x}+(1-\theta) \mathbf{y} \in \mathcal{H}, \text { where } \theta \in[0,1] \tag{2}
\end{equation*}
$$

- In particular, it will belong to the hyperplane if it's true that :

$$
\begin{align*}
\mathbf{a}^{T}(\theta \mathbf{x}+(1-\theta) \mathbf{y}) & =b \tag{3}\\
\Longrightarrow \mathbf{a}^{T} \theta \mathbf{x}+\mathbf{a}^{T}(1-\theta) \mathbf{y} & =b \tag{4}\\
\Longrightarrow \theta \mathbf{a}^{T} \mathbf{x}+(1-\theta) \mathbf{a}^{T} \mathbf{y} & =b \tag{5}
\end{align*}
$$

- And, we also have $\mathbf{a}^{T} \mathbf{x}=b$ and $\mathbf{a}^{T} \mathbf{y}=b$. Hence $\theta b+(1-\theta) b=b$. [Hence Proved] So a hyperplane is a convex set.

Definition of Convex Sets and Convex Functions

Figure: A sample convex function

$$
\begin{gather*}
\therefore f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathrm{x})+(1-\theta) f(\mathbf{y}) \tag{6}\\
\forall x, y \in d \operatorname{dmn}(f) \\
\text { Assuming din }(f) \text { is convex }
\end{gather*}
$$

Example of a Convex Function

Q. $I s\|\phi \mathbf{w}-\mathbf{y}\|^{2}$ convex? (in $\mathbf{\omega}$) $\&(\omega)$
A.

- To check this, we have (Cite : Theorem 75) ${ }^{1}$. Is this practical?: $f\left(\omega^{\prime}\right) \geqslant f(\omega)+\nabla^{\top} f(\omega)\left(\omega^{i}-\omega\right) \forall \omega, \omega^{\prime}$
- Instead, we would use (Cite : Theorem 79)² to check for the convexity of our function : $\nabla^{2} f(\omega) \geqslant 0(p . s-d) \forall \omega$
- So the condition that has our focus is -
$\nabla^{2} f\left(\mathbf{w}^{*}\right)$ is positive semi -definite, if $\forall \mathbf{x} \neq 0, \mathbf{x}^{T} \nabla^{2} f\left(\mathbf{w}^{*}\right) \mathbf{x} \geq 0$
- We have, is always p.sod full colmingl. dank. dendont (7) even if ϕ is $\nabla^{2} f(\mathrm{w})=2 \phi^{T} \phi$, No $^{\text {no }}$
- So, $\|\phi \mathbf{w}-\mathbf{y}\|^{2}$ is convex, since the domain for \mathbf{w} is \mathbb{R}^{n} and is convex
${ }^{1}$ cs709/notes/BasicsOfConvexOptimization.pdf
${ }^{2}$ cs709/notes/BasicsOfConvexOptimization.pdf

Strict Convexity
Eg: $f(x)=a^{\uparrow} x+b$ is convex but NOT Strictly convex
Q. When is $f(x)$ (strictly) convex?

A1. If $f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq(\leq) \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})$ for all $\theta \in[0,1]$ and for all $\mathbf{x}, \mathbf{y} \in \operatorname{dmn}(f)$
A2. OR Iff $\nabla^{2} f(\mathbf{x})$ is positive semi-definite (definite) for all $\mathbf{x} \in \operatorname{dmn}(f)$
Q: When is $\|\phi \omega-y\|^{2}$ strictly convex?
sons: When ϕ is full column rank so that $\phi^{\top} \phi$ is positive definite

Strict Convexity

Q. When is $f(\mathbf{x})$ (strictly) convex?

A1. Iff $f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq(<) \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})$ for all $\theta \in[0,1]$ and for all $\mathbf{x}, \mathbf{y} \in d m n(f)$
A2. OR Iff $\nabla^{2} f(\mathbf{x})$ is positive semi-definite (definite) for all $\mathbf{x} \in d m n(f)$
Q. Is $\|\phi \mathbf{w}-\mathbf{y}\|^{2}$ strictly convex?
A. Iff ϕ has full column rank.

To prove: If a function is convex, any point of local minima \equiv point of global minima
Proof - (Cite : Theorem 69) ${ }^{3}$
Thus? $\omega^{*}=\left(\phi^{\top} \phi\right)^{-1} \phi^{\top} y$ is unique global minimizer of
${ }^{3}$ cs709/notes/BasicsOfConvexOptimization.pdf $\|\varphi \omega-\|_{2}$

If a function f is strictly convex, it will have a unique global minimum?

Eg: $f(x)=b \ldots$ is convex but not strictly $\begin{gathered}\text { convex }\end{gathered}$
it has global! min local min = all pto in dm rf) convex

Theorem

To prove : If a function is strictly convex, it has a unique point of global minima
Proof - (Cite : Theorem 70) ${ }^{4}$
Since $\|\phi \mathbf{w}-\mathbf{y}\|^{2}$ is strictly convex for linearly independent ϕ,

$$
\begin{equation*}
\nabla f\left(\mathbf{w}^{*}\right)=0 \text { for } \mathbf{w}^{*}=\left(\phi^{T} \phi\right)^{-1} \phi^{T} \mathbf{y} \tag{9}
\end{equation*}
$$

Thus, \mathbf{w}^{*} is a point of global minimum. One can also find a solution to $\left(\phi^{T} \phi \mathbf{w}=\phi^{T} \mathbf{y}\right)$ by Gauss elimination.

[^0]
Redundant ϕ and Overfitting

- What do you expect in experiments if ϕ had redundancy?

Example of linearly correlated features

- Example where ϕ doesn't have a full column rank,

$$
\begin{equation*}
\phi=\left[\right] \tag{10}
\end{equation*}
$$

- This is the simplest form of linear correlation of features.

Redundant ϕ and Overfitting

Figure: train-RMS and test-RMS values vs t (degree of polynomial) graph

- Too many bends ($\mathrm{t}=9$ onwards) in curve \equiv high values of some $W_{i} s$
- Train and test errors differ significantly

Homework:

Explain why the error on the train data reduces as the degree increases until 7 . Why does the error on the test data also decrease until degree of 7 ?

Now explain why the train continues to remain low even beyond degree of 7 whereas the test data starts increasing now.

[^0]: ${ }^{4}$ cs709/notes/BasicsOfConvexOptimization.pdf

