Convex Optimization, Constrained Optimization and Regression Instructor: Prof. Ganesh Ramakrishnan

Agenda

Definition of Convex Sets and Convex Functions

Definition of convex sets and convex functions (Cite : Definition 32 and 35)[1]

Figure: Examples of a convex set (a) and a non-convex set (b) Cite: http://cs229.stanford.edu/section/cs229-cvxopt.pdf

A set C is convex if, for any x,y \in C and $\theta \in \Re$ and $0 \le \theta \le 1$,

$$\theta x + (1 - \theta) \mathbf{y} \in C \tag{1}$$

500

3 / 19

January 22, 2016

Example of a Convex Set $\mathcal{H}_{\mathbf{p},\mathbf{V}} = \left\{ \mathbf{q} \mid (\mathbf{p} - \mathbf{q})^{\mathsf{T}} \mathbf{V} = \mathbf{O} \right\}$ Vendy by: 9, EHp, v 9, EHp, v => 09, + (1-0) gEHp, v $(p-q_1)V=0$ $(p-q_2)V=0=)$ ----. To prove : Verify that a hyperplane is a convex set.

Proof

- A Hyperplane \mathcal{H} is defined as $\{\mathbf{x} | \mathbf{a}^T \mathbf{x} = b, \mathbf{a} \neq \mathbf{0}\}$
- \bullet Let ${\bf x}$ and ${\bf y}$ be vectors that belong to the hyperplane
- Since they belong to the hyperplane, $\mathbf{a}^T \mathbf{x} = b$ and $\mathbf{a}^T \mathbf{y} = b$
- In order to prove the convexity of the set we must show that :

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in \mathcal{H}, \text{ where } \theta \in [0, 1]$$
 (2)

In particular, it will belong to the hyperplane if it's true that :

$$\mathbf{a}^{T}(\mathbf{\theta}\mathbf{x} + (1-\mathbf{\theta})\mathbf{y}) = \mathbf{b}$$
 (3)

$$\implies \mathbf{a}^{\mathsf{T}} \theta \mathbf{x} + \mathbf{a}^{\mathsf{T}} (1 - \theta) \mathbf{y} = b$$
 (4)

$$\implies \theta \mathbf{a}^T \mathbf{x} + (1 - \theta) \mathbf{a}^T \mathbf{y} = b$$
 (5)

 And, we also have a^Tx = b and a^Ty = b. Hence θb + (1 - θ)b = b. [Hence Proved] So a hyperplane is a convex set.

Definition of Convex Sets and Convex Functions

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x} + (1 - \theta)f(\mathbf{y}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x} + (1 - \theta)f(\mathbf{y}) + (1 - \theta)f(\mathbf{y})$$

$$f(\theta \mathbf{x} + (1 - \theta)f(\mathbf{y}) + (1 - \theta)f(\mathbf{y})$$

Example of a Convex Function

- Q. Is $||\phi \mathbf{w} \mathbf{y}||^2$ convex? (in ω) gw Α.
 - To check this, we have (Cite : Theorem 75)¹ Is this practical? : $f(\omega) > f(\omega) + \nabla^{T} f(\omega) (\omega - \omega) + \omega_{1} \omega$ • Instead, we would use (Cite : Theorem 79)² to check for the
 - convexity of our function : $\sqrt{2}f(\omega) \gtrsim 0$ (p.s-4) $\forall \omega$
 - So the condition that has our focus is -

 $\nabla^2 f(\mathbf{w}^*)$ is positive semi – definite, if $\forall \mathbf{x} \neq 0, \ \mathbf{x}^T \nabla^2 f(\mathbf{w}^*) \mathbf{x} > 0$ 7)

• We have, is always hot full column k! where $f(\mathbf{w}) = (2\phi^T\phi) \rightarrow (rdependent)$ (8)

• So, $\|\phi \mathbf{w} - \mathbf{y}\|^2$ is convex, since the domain for \mathbf{w} is \mathbb{R}^n and is CONVAY

¹cs709/notes/BasicsOfConvexOptimization.pdf

²cs709/notes/BasicsOfConvexOptimization.pdf

500

درساع

Strict Convexity

Eg: f(x) = a^Tx fb is convex but Not strictly convex **Q.** When is $f(\mathbf{x})$ (strictly) convex? **A1.** Iff $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \leq (\langle \mathbf{y} \rangle \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$ for all $\theta \in [0, 1]$ and for all $\mathbf{x}, \mathbf{y} \in dmn(f)$ **A2.** OR Iff $\nabla^2 f(\mathbf{x})$ is positive semi-definite (definite) for all $\mathbf{x} \in dmn(f)$ Q: When is $||\phi w - y||^2$ strictly convex? Mrs: When ϕ is full column rank so that $\phi \tau \phi$ is positive definite

500

くロン 人間 とくほど くほどう ほう

Strict Convexity

Q. When is $f(\mathbf{x})$ (strictly) convex? **A1.** Iff $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \leq (\langle \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}) \text{ for all } \theta \in [0, 1]$ and for all $\mathbf{x}, \mathbf{y} \in dmn(f)$ **A2.** OR Iff $\nabla^2 f(\mathbf{x})$ is positive semi-definite (definite) for all $\mathbf{x} \in dmn(f)$ **Q.** Is $\|\phi \mathbf{w} - \mathbf{y}\|^2$ strictly convex? **A.** Iff ϕ has full column rank. **To prove:** If a function is convex, any point of local minima \equiv point

of global minima

Proof - (Cite : Theorem 69)³

Proof - (Cite : Theorem 69)³
Thus:
$$W^{*} = (\phi^{T} \phi)^{-1} \phi^{T} \gamma$$
 is Unique global minimize

³cs709/notes/BasicsOfConvexOptimization.pdf

Theorem

To prove : If a function is strictly convex, it has a unique point of global minima

Proof - (Cite : Theorem 70)⁴ Since $\|\phi \mathbf{w} - \mathbf{y}\|^2$ is strictly convex for linearly independent ϕ ,

$$\nabla f(\mathbf{w}^*) = 0 \text{ for } \mathbf{w}^* = (\phi^T \phi)^{-1} \phi^T \mathbf{y}$$
(9)

Thus, \mathbf{w}^* is a point of global minimum. One can also find a solution to $(\phi^T \phi \mathbf{w} = \phi^T \mathbf{y})$ by Gauss elimination.

⁴cs709/notes/BasicsOfConvexOptimization.pdf 👍 👘 😪 👔 🔊 🧟

Redundant ϕ and Overfitting

< □ >

Example of linearly correlated features

• Example where ϕ doesn't have a full column rank,

$$\phi = \begin{bmatrix} x_1 & x_1^2 & x_1^2 & x_1^3 \\ x_2 & x_2^2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ x_n & x_n^2 & x_n^2 & x_n^3 \end{bmatrix}$$

(10)

500

12 / 19

January 22, 2016

This is the simplest form of linear correlation of features.

Redundant ϕ and Overfitting

Figure: train-RMS and test-RMS values vs t(degree of polynomial) graph

- Too many bends (t=9 onwards) in curve ≡ high values of some *w*'_is
- Train and test errors differ significantly

Homework:	
	the error on the train data reduces as the degree
	ntil 7. Why does the error on the test data also
decrease u	ntil degree of 7?
Now explain	why the train continues to remain low even beyond
•	whereas the test data starts increasing now.