Lecture 06 - Convex Optimization and Regression Instructor: Prof. Ganesh Ramakrishnan

< (17) > < (17) > <

Agenda

- Definition of Convex Sets and Functions
- Example of Convex Set
- Example of Convex Function
- Theorem related to Convex Functions
- Overfitting
- Convex Optimization Problems
- Next Lecture

Definition of Convex Sets and Convex Functions

Definition of convex sets and convex functions (Cite : Definition 32 and 35)[1]

Figure: Examples of a convex set (a) and a non-convex set (b) Cite: http://cs229.stanford.edu/section/cs229-cvxopt.pdf

A set C is convex if, for any $x, y \in C$ and $\theta \in \Re$ and $0 \le \theta \le 1$,

$$\theta x + (1 - \theta) x \in C \tag{1}$$

Example of a Convex Set

To prove : Verify that a hyperplane is a convex set.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Proof

- A Hyperplane \mathcal{H} is defined as $\{\mathbf{x} | \mathbf{a}^T \mathbf{x} = b, \mathbf{a} \neq \mathbf{0}\}$
- \bullet Let ${\bf x}$ and ${\bf y}$ be vectors that belong to the hyperplane
- Since they belong to the hyperplane, $\mathbf{a}^T \mathbf{x} = b$ and $\mathbf{a}^T \mathbf{y} = b$
- In order to prove the convexity of the set we must show that :

$$\theta \mathbf{x} + (1 - \theta) \mathbf{y} \in \mathcal{H}, \text{ where } \theta \in [0, 1]$$
 (2)

In particular, it will belong to the hyperplane if it's true that :

$$\mathbf{a}^{T}(\mathbf{\theta}\mathbf{x} + (1-\mathbf{\theta})\mathbf{y}) = \mathbf{b}$$
 (3)

$$\implies \mathbf{a}^{\mathsf{T}} \theta \mathbf{x} + \mathbf{a}^{\mathsf{T}} (1 - \theta) \mathbf{y} = b$$
 (4)

$$\implies \theta \mathbf{a}^T \mathbf{x} + (1 - \theta) \mathbf{a}^T \mathbf{y} = b$$
 (5)

• And, we also have $\mathbf{a}^T \mathbf{x} = b$ and $\mathbf{a}^T \mathbf{y} = b$. Hence $\theta b + (1 - \theta)b = b$. [Hence Proved] So a hyperplane is a convex set.

Definition of Convex Sets and Convex Functions

Figure: A sample convex function

$$\therefore f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$
(6)

Image: A matrix

Example of a Convex Function

- **Q.** Is $||\phi \mathbf{w} \mathbf{y}||^2$ convex?
- Α.
 - To check this, we have (Cite : Theorem 75)¹. Is this practical?
 - Instead, we would use (Cite : Theorem 79)² to check for the convexity of our function
 - So the condition that has our focus is -

 $\nabla^2 f(\mathbf{w}^*)$ is positive semi – definite, if $\forall \mathbf{x} \neq 0$, $\mathbf{x}^T \nabla^2 f(\mathbf{w}^*) \mathbf{x} \ge 0$ (7)

We have,

$$\nabla^2 f(\mathbf{w}) = 2\phi^T \phi \tag{8}$$

• So, $\|\phi \mathbf{w} - \mathbf{y}\|^2$ is convex, since the domain for \mathbf{w} is \mathbb{R}^n and is <u>convex</u>

¹cs709/notes/BasicsOfConvexOptimization.pdf

²cs709/notes/BasicsOfConvexOptimization.pdf

Strict Convexity

Q. When is $f(\mathbf{x})$ (strictly) convex? **A1.** Iff $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \leq (<) \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$ for all $\theta \in [0, 1]$ and for all $\mathbf{x}, \mathbf{y} \in dmn(f)$ **A2.** OR Iff $\nabla^2 f(\mathbf{x})$ is positive semi-definite (definite) for all $\mathbf{x} \in dmn(f)$

< ロ > < 同 > < 回 > < 回 > < 回 >

Strict Convexity

Q. When is $f(\mathbf{x})$ (strictly) convex? **A1.** Iff $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \leq (<) \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$ for all $\theta \in [0, 1]$ and for all $\mathbf{x}, \mathbf{y} \in dmn(f)$ **A2.** OR Iff $\nabla^2 f(\mathbf{x})$ is positive semi-definite (definite) for all $\mathbf{x} \in dmn(f)$ **Q.** $ls \|\phi \mathbf{w} - \mathbf{y}\|^2$ strictly convex? **A.** Iff ϕ has full column rank.

To prove: If a function is convex, any point of local minima \equiv point of global minima **Proof** - (Cite : Theorem 69)³

³cs709/notes/BasicsOfConvexOptimization.pdf, approximation.pdf

Theorem

To prove : If a function is strictly convex, it has a unique point of global minima

Proof - (Cite : Theorem 70)⁴ Since $\|\phi \mathbf{w} - \mathbf{y}\|^2$ is strictly convex for linearly independent ϕ ,

$$\nabla f(\mathbf{w}^*) = 0 \text{ for } \mathbf{w}^* = (\phi^T \phi)^{-1} \phi^T \mathbf{y}$$
(9)

Thus, \mathbf{w}^* is a point of global minimum. One can also find a solution to $(\phi^T \phi \mathbf{w} = \phi^T \mathbf{y})$ by Gauss elimination.

Redundant ϕ and Overfitting

• What do you expect in experiments if ϕ had redundancy?

э

Example of linearly correlated features

• Example where ϕ doesn't have a full column rank,

$$\phi = \begin{bmatrix} x_1 & x_1^2 & x_1^2 & x_1^3 \\ x_2 & x_2^2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ x_n & x_n^2 & x_n^2 & x_n^3 \end{bmatrix}$$

(10)

• This is the simplest form of linear correlation of features.

E 6 4

Redundant ϕ and Overfitting

Figure: train-RMS and test-RMS values vs t(degree of polynomial) graph

- Too many bends (t=9 onwards) in curve ≡ high values of some *w*_is
- Train and test errors differ significantly