Lecture 06 - Convex Optimization and Regression
Instructor: Prof. Ganesh Ramakrishnan
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Agenda

@ Definition of Convex Sets and Functions
@ Example of Convex Set

@ Example of Convex Function

@ Theorem related to Convex Functions

@ Overfitting

@ Convex Optimization Problems

@ Next Lecture
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Definition of Convex Sets and Convex Functions

Definition of convex sets and convex functions (Cite :
Definition 32 and 35)[1]

N

Figure: Examples of a convex set (a) and a non-convex set (b) Cite:
http://cs229.stanford.edu/section /cs229-cvxopt.pdf

A set C is convex if, for any x,y € Cand § € Rand 0 <0 <1,
Ox+ (1 —6)xe C (1)
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Example of a Convex Set

To prove : Verify that a hyperplane is a convex set.
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Proof

@ A Hyperplane H is defined as {x|a’x = b,a # 0}

@ Let x and y be vectors that belong to the hyperplane

@ Since they belong to the hyperplane, a’x = b anda’y = b

@ In order to prove the convexity of the set we must show that :

Ox + (1 —0)y € H, where 6 € [0,1] (2)

@ In particular, it will belong to the hyperplane if it's true that :

a’(bx+(1—-0)y) = b (3)
— a'fx+a’(l1-0y = b (4)
— fa’x+(1—0a'y = b (5)

@ And, we also have a’x = b and a’y = b. Hence
0b+ (1 — 0)b = b. [Hence Proved] So a hyperplane is a convex
set.
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Definition of Convex Sets and Convex Functions
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Figure: A sample convex function

L AOx + (1= 0)y) < 0fx) + (1 - )fy) (6)
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Example of a Convex Function

Q. Is [[pw — y||* convex?
A.

@ To check this, we have (Cite : Theorem 75)!. Is this
practical?

@ Instead, we would use (Cite : Theorem 79)? to check for the
convexity of our function

@ So the condition that has our focus is -
V2f(w*) is positive semi — definite, if ¥x # 0, x"V*fw*)x > 0

(7)
ViHw) =20"¢ (8)

2 . . . . .
is convex, since the domain for w is R" and is

@ We have,

canvex
1¢s709/notes/Basics0fConvexOptimization.pdf
2cs709/notes/Basics0fConvexOptimization.pdf
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Strict Convexity

Q. When is f(x) (strictly) convex?

Al. Iff flox+ (1 —0)y) < (<) 0fix) + (1 —0)f(y) for all 6§ € [0, 1]
and for all x,y € dmn(f)

A2. OR Iff V?f(x) is positive semi-definite (definite) for all

x € dmn(f)
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Strict Convexity

Q. When is f(x) (strictly) convex?

AL. Iff f(0x + (1 — 0)y) < (<) 0fx) + (1 — O)fy) for all 6 € [0, 1]
and for all x,y € dmn(f)

A2. OR Iff V2f(x) is positive semi-definite (definite) for all

x € dmn(f)

Q. Is||pw — y||* strictly convex?

A. Iff ¢ has full column rank.

To prove: If a function is convex, any point of local minima = point
of global minima
Proof - (Cite : Theorem 69)3

3¢s709/notes/Basics0fConvexOptimization.pdf
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Theorem

To prove : If a function is strictly convex, it has a unique point of
global minima

Proof - (Cite : Theorem 70)*

Since ||¢pw — y||” is strictly convex for linearly independent ¢,

VAwW) =0 forw" = (67¢)"'¢"y (9)

Thus, w* is a point of global minimum. One can also find a solution
to (¢T¢pw = ¢"y) by Gauss elimination.

4cs709/notes/Basics0fConvexOptimization.pdf
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Redundant ¢ and Overfitting

@ What do you expect in experiments if ¢ had redundancy?
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Example of linearly correlated features

@ Example where ¢ doesn’t have a full column rank,

x5 X
X2X%X§X% (10)

Xn X X %

@ This is the simplest form of linear correlation of features.
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Redundant ¢ and Overfitting

:::::

Figure: train-RMS and test-RMS values vs t(degree of polynomial) graph

@ Too many bends (t=9 onwards) in curve = high values of some
ws
@ Train and test errors differ significantly
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