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Agenda

Definition of Convex Sets and Functions
Example of Convex Set
Example of Convex Function
Theorem related to Convex Functions
Overfitting
Convex Optimization Problems
Next Lecture
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Definition of Convex Sets and Convex Functions
Definition of convex sets and convex functions (Cite :
Definition 32 and 35)[1]

Figure: Examples of a convex set (a) and a non-convex set (b) Cite:
http://cs229.stanford.edu/section/cs229-cvxopt.pdf

A set C is convex if, for any x,y ∈ C and θ ∈ ℜ and 0 ≤ θ ≤ 1,

θx + (1− θ)x ∈ C (1)
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Example of a Convex Set

To prove : Verify that a hyperplane is a convex set.
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Proof
A Hyperplane H is defined as {x|aTx = b, a ̸= 0}
Let x and y be vectors that belong to the hyperplane
Since they belong to the hyperplane, aTx = b and aTy = b
In order to prove the convexity of the set we must show that :

θx + (1− θ)y ∈ H, where θ ∈ [0, 1] (2)

In particular, it will belong to the hyperplane if it’s true that :

aT(θx + (1− θ)y) = b (3)
=⇒ aTθx + aT(1− θ)y = b (4)
=⇒ θaTx + (1− θ)aTy = b (5)

And, we also have aTx = b and aTy = b. Hence
θb + (1− θ)b = b. [Hence Proved] So a hyperplane is a convex
set.
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Definition of Convex Sets and Convex Functions

Figure: A sample convex function

∴ f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) (6)
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Example of a Convex Function
Q. Is ||ϕw − y||2 convex?
A.

To check this, we have (Cite : Theorem 75)1. Is this
practical?
Instead, we would use (Cite : Theorem 79)2 to check for the
convexity of our function
So the condition that has our focus is -

∇2f(w∗) is positive semi − definite, if ∀x ̸= 0, xT∇2f(w∗)x ≥ 0
(7)

We have,
∇2f(w) = 2ϕTϕ (8)

So, ∥ϕw − y∥2 is convex, since the domain for w is Rn and is
convex

1cs709/notes/BasicsOfConvexOptimization.pdf
2cs709/notes/BasicsOfConvexOptimization.pdf
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Strict Convexity

Q. When is f(x) (strictly) convex?
A1. Iff f(θx + (1− θ)y) ≤ (<) θf(x) + (1− θ)f(y) for all θ ∈ [0, 1]
and for all x,y ∈ dmn(f)
A2. OR Iff ∇2f(x) is positive semi-definite (definite) for all
x ∈ dmn(f)
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Strict Convexity

Q. When is f(x) (strictly) convex?
A1. Iff f(θx + (1− θ)y) ≤ (<) θf(x) + (1− θ)f(y) for all θ ∈ [0, 1]
and for all x,y ∈ dmn(f)
A2. OR Iff ∇2f(x) is positive semi-definite (definite) for all
x ∈ dmn(f)
Q. Is ∥ϕw − y∥2 strictly convex?
A. Iff ϕ has full column rank.

To prove: If a function is convex, any point of local minima ≡ point
of global minima
Proof - (Cite : Theorem 69)3

3cs709/notes/BasicsOfConvexOptimization.pdf
January 22, 2016 9 / 13

 cs709/notes/BasicsOfConvexOptimization.pdf


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem

To prove : If a function is strictly convex, it has a unique point of
global minima
Proof - (Cite : Theorem 70)4

Since ∥ϕw − y∥2 is strictly convex for linearly independent ϕ,

∇f(w∗) = 0 for w∗ = (ϕTϕ)−1ϕTy (9)

Thus, w∗ is a point of global minimum. One can also find a solution
to (ϕTϕw = ϕTy) by Gauss elimination.

4cs709/notes/BasicsOfConvexOptimization.pdf
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Redundant ϕ and Overfitting

What do you expect in experiments if ϕ had redundancy?
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Example of linearly correlated features

Example where ϕ doesn’t have a full column rank,

ϕ =


x1 x21 x21 x31
x2 x22 x22 x32
... ... ... ...

xn x2n x2n x3n

 (10)

This is the simplest form of linear correlation of features.
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Redundant ϕ and Overfitting

Figure: train-RMS and test-RMS values vs t(degree of polynomial) graph

Too many bends (t=9 onwards) in curve ≡ high values of some
w′

is
Train and test errors differ significantly
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