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Lecture 07- Convex and Constrained Optimization
and Regression

Instructor: Prof. Ganesh Ramakrishnan
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Agenda

Overfitting

Regularized Regression and Constrained Convex Optimization

Support Vector Regression
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Redundant ϕ and Overfitting

Figure: train-RMS and test-RMS values vs t(degree of polynomial) graph

Too many bends (t=9 onwards) in curve ≡ high values of some
w′

is

Train and test errors differ significantly
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Constrained Least Squares Linear Regression

Find
w∗ = argminw∥ϕw − y∥2 s.t. ∥w∥p ≤ ζ, (1)

where

∥w∥p =
(

n
∑

i=1

|wi|
p
)

1

p

(2)

Why?
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p-Norm level curves

Figure: p-Norm curves for constant norm value and different p
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Convex Optimization Problem

Formally, a convex optimization problem is an optimization
problem of the form

minimize f(x) (3)

subject to c ∈ C (4)

where f is a convex function, C is a convex set, and x is the
optimization variable.

An improved form of the above would be

minimize f(x) (5)

subject to gi(x) ≤ 0, i = 1, ...,m (6)

hi(x) = 0, i = 1, ..., p (7)

where f is a convex function, gi are convex functions, and hi are
affine functions, and x is the vector of optimization variables.
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Constrained convex problems
Q. How to solve constrained problems of the above-mentioned type?
A. General problem format :

Minimize f(w) s.t. g(w) ≤ 0 (8)
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Constrained Convex Problems

At the point of optimality,

Either g(w∗) < 0 & ∇f(w∗) = 0 (9)

Or g(w∗) = 0 & ∇f(w∗) = α∇g(w∗) (10)

If w∗ is on the border of g, i.e., g(w∗) = 0,

∇f(w∗) = α∇g(w∗) (11)

(Duality Theory) (Cite : Section 4.4, pg-72)1

Intuition: If the above didn’t hold, then we would have
∇f(w∗) = α1∇g(w

∗) + α2∇⊥g(w
∗), where by moving in

direction ±∇⊥g(w
∗), we remain on boundary g(w∗) = 0, while

decreasing/increasing value of f, which is not possible at the
point of optimality.

1cs709/notes/BasicsOfConvexOptimization.pdf
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”Regularized” Linear Regression

We limit the weights of the coefficients by putting a constraint
on size of the L2 norm of the weight vector

argmin
w
(Φw − Y)T(Φw − Y)

∥w∥2
2 ≤ ξ

The objective function, namely f(w) = (Φw − Y)T(Φw − Y) is
strictly convex. The constraint function, g(w) = ∥w∥2

2 − ξ, is
also convex.

For convex g(w), the set {w|g(w) ≤ 0}, is also convex. (Why?)
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Duality and KKT conditions

For a convex objective and constraint function, the minima, w∗, can
satisfy one of the following two conditions:

1 g(w∗) = 0 and ∇f(w∗) = α∇g(w∗)

2 g(w∗) < 0 and ∇f(w∗) = 0
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Figure: Two conditions when a minima can occur: a) When the minima is
on the constraint function boundary, in which case the gradients are along
the same direction ;b) When minima is inside the constraint space (shown
in yellow shade), in which case ∇f(w∗) = 0.
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Duality and KKT conditions

This fact can be easily visualized from the previous figure. As we
can see, the first condition occurs when minima lies on the
boundary of function g. In this case, gradient vectors
corresponding to the function f and the function g, at w∗, point
in the same direction barring multiplication by a real constant.

Second condition depicts the case when minima lies inside the
constraint space. This space is shown shaded in Figure 1.
Clearly, for this case ∇f(w∗) = 0 for minima to occur. This
primal problem can be converted to dual using the lagrange
multiplier. According to which, we can convert this problem to
the objective function augmented by weighted sum of constraint
functions in order to get the corresponding lagrangian.

L(w, λ) = f(w) + λg(w);λ ∈ R
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Duality and KKT conditions

Here, we wish to penalize higher magnitude coefficients, hence,
we wish g(w) to be negative while minimizing the lagrangian. In
order to maintain such direction, we must have λ ≥ 0. Also, for
solution w∗ to be feasible, ∇g(w∗) ≤ 0.

Due to complementary slackness condition, we further have
λg(w∗) = 0, which roughly suggests that the lagrange multiplier
is zero unless constraint is active at the minimum point. As w∗

minimizes the lagrangian L(w, λ), gradient must vanish at this
point and hence we have f(w∗) + λ∇g(w∗) = 0
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Duality and KKT conditions

In general, optimization problem with inequality and equality
constraints might be depicted in the following manner:

minwf(w)

subject to gi(w) ≤ 0;1 ≤ i ≤ m

hj(w) = 0;1 ≤ j ≤ p
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Duality and KKT conditions

Here, w ∈ R
n and the domain is the intersection of all

functions. Lagrangian is:

L(w, λ, µ) = f(w) +
m
∑

i=1

λigi(w) +

p
∑

j=1

µjhj(w)

Lagrange dual function is the minimum value of the lagrangian
over λ ∈ R

m, µ ∈ R
p.

L∗(λ, µ) = argminw L(w, λ, µ)
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Duality and KKT conditions

The dual function yields lower bound for minimizer of the primal
formulation.

Max of dual function L∗(λ, µ) over (λ, µ) is also therefore a
lower bound

argminλ,µ L
∗(λ, µ)

The gap between primal and dual solutions is the duality gap,

Duality gap characterizes suboptimality of the solution.

f(w)−L∗(λ, µ)

When functions f and gi, ∀i ∈ [1,m] are convex and hj, ∀j ∈ [1, p]
are affine, Karush-Kuhn-Tucker (KKT) conditions are both
necessary and sufficient for points to be both primal and dual
optimal with zero duality gap.

January 29, 2016 16 / 22



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Duality and KKT conditions

For above mentioned formulation of the problem, KKT conditions for
all differentiable functions (i.e. f, gi, hj) with ŵ primal optimal and

(λ̂, µ̂) dual optimal point may be given in the following manner:

f(ŵ) +
∑m

i=1
λ̂i∇gi(ŵ) +

∑p

j=1
µ̂jhj(ŵ) = 0

gi(ŵ) ≤ 0; 1 ≤ i ≤ m

λ̂i ≥ 0; 1 ≤ i ≤ m

λ̂igi(ŵ) = 0; 1 ≤ i ≤ m

hj(ŵ) = 0; 1 ≤ j ≤ p
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