Lecture 08: Support Vector Regression

 Instructor: Prof. Ganesh Ramakrishnan
Recap: Duality and KKT conditions

$\min f(x)$
st $g_{i}(x) \leq 0 \& h_{j}(x)=0$
For the previously mentioned formulation of the problem, KKT conditions for all differentiable functions (i.e. f, g_{i}, h_{j}) with $\hat{\mathbf{w}}$ primal optimal and $(\hat{\lambda}, \hat{\mu})$ dual optimal point are:

- $\nabla f(\hat{\mathbf{w}})+\sum_{i=1}^{m} \hat{\lambda}_{i} \nabla g_{i}(\hat{\mathbf{w}})+\sum_{j=1}^{p} \hat{\mu}_{j} \nabla h_{j}(\hat{\mathbf{w}})=0$
- $g_{i}(\hat{\mathbf{w}}) \leq 0 ; 1 \leq i \leq m$
- $\hat{\lambda}_{i} \geq 0 ; 1 \leq i \leq m$
$\exists \hat{\lambda}_{i} \& \hat{\mu}_{j}$
$\leqslant t \ldots$.
- $\hat{\lambda}_{i} g_{i}(\hat{\mathbf{w}})=0 ; 1 \leq i \leq m$
- $h_{j}(\hat{\mathbf{w}})=0 ; 1 \leq j \leq p$

(For proving existence of λ for L_{2} constrained least $s y$ lin reg) Bound on λ in the regularized least square solution

 To minimize the error function subject to constraint $|\mathbf{w}| \leq \xi$, we apply KKT conditions at the point of optimality $\mathbf{w}^{*}$$$
\left.\nabla_{\mathbf{w}^{*}}(f(\underline{\mathbf{w}})+\lambda \mathbf{g}(\mathbf{w}))=\mathbf{0} \longrightarrow \text { (} \mathbf{x}\right)
$$

(the first KKT condition). Here, $f(\mathbf{w})=(\phi \mathbf{w}-\mathbf{Y})^{\mathbf{T}}(\phi \mathbf{w}-\mathbf{Y})$ and, $g(\mathrm{w})=\|\mathrm{w}\|_{2}^{2}-\xi . \quad\left(\|\omega\|_{2}^{2} \leq \xi\right)$
Solving we get,

$$
\mathbf{w}^{*}=\left(\phi^{\mathbf{T}} \phi+\lambda \mathbf{I}\right)^{-\mathbf{1}} \phi^{\mathbf{T}} \mathbf{y} \rightarrow(\text { Solving }(4))
$$

From the second KKT condition we get,

$$
\left\|w^{*}\right\|_{2}^{2} \leq \xi \quad\binom{\text { if norm is left }}{\text { unspecified, assume } L_{2}}
$$

$$
\lambda \geq 0
$$

From the fourth condition

$$
\lambda\left\|\mathbf{w}^{*}\right\|^{\mathbf{2}}=\lambda \xi
$$

Complementary slackness,

Bound on λ in the regularized least square solution

Values of \mathbf{w}_{*} and λ that satisfy all these equations would yield an optimal solution. Consider,

$$
\left(\phi^{T} \phi+\lambda I\right)^{-1} \phi^{T} \mathbf{y}=\mathbf{w}^{*}
$$

We multiply $\left(\phi^{\top} \phi+\lambda I\right)$ on both sides and obtain,

$$
\left\|\left(\phi^{T} \phi\right) \mathbf{w}^{*}+(\lambda \mathbf{I}) \mathbf{w}^{*}\right\|=\left\|\phi^{\mathbf{T}} \mathbf{y}\right\|
$$

Using the triangle inequality we obtain,

$$
\left\|\left(\phi^{T} \phi\right) \mathbf{w}^{*}\right\|+(\lambda)\left\|\mathbf{w}^{*}\right\| \geq\left\|\left(\phi^{\mathbf{T}} \phi\right) \mathbf{w}^{*}+(\lambda \mathbf{I}) \mathbf{w}^{*}\right\|=\left\|\phi^{\mathbf{T}} \mathbf{y}\right\|
$$

Bound on λ in the regularized least square solution

$\left\|\left(\phi^{T} \phi\right) \mathbf{w}^{*}\right\| \leq \alpha\left\|\mathbf{w}^{*}\right\|$ for some α for finite $\mid\left(\phi^{T} \phi\right) \mathbf{w}^{*} \|$. Substituting in the previous equation,
Chebycher inequality' for induced matrix norm:

$$
\left.\alpha=\left\|\phi^{\top} \phi\right\|_{2} \quad \| A+\lambda\right)\left\|w^{*}\right\| \geq\left\|\phi^{T} \mathbf{y}\right\| \quad\left\|\sup _{2}\right\| A x \|_{2}
$$

$$
\begin{aligned}
&(\alpha+\lambda)\left\|\mathbf{w}^{*}\right\| \geq\left\|\phi^{\mathbf{T}} \mathbf{y}\right\|\|A\|_{2}=\sup \|A x\|_{2} \\
& \lambda \geq \frac{\left\|\phi^{T} \mathbf{y}\right\|}{\left\|\mathbf{w}^{*}\right\|}-\alpha \quad\|A\|_{2}=\text { also called } \\
& \text { Frobenus nom }
\end{aligned}
$$ ie.

Note that when $\left\|\mathbf{w}^{*}\right\| \rightarrow \mathbf{0}, \lambda \rightarrow \infty$. (Any intuition?) Using $\left\|\mathbf{w}^{*}\right\|^{2} \leq \xi$ we get,
https://en.wikipedia.org/wiki/Matrix_norm\#Frobenius_norm

$$
\lambda \geq \frac{\left\|\phi^{T} \mathbf{y}\right\|}{\sqrt{\xi}}-\alpha
$$

This is not the exact solution of λ but the bound proves the existence of λ for some ξ and ϕ.

Alternative objective function

Substituting $g(\mathbf{w})=\|\mathbf{w}\|^{2}-\xi$, in the first KKT equation considered earlier:

$$
\nabla_{\mathbf{w}^{*}}\left(f(\mathbf{w})+\lambda \cdot\left(\|\mathbf{w}\|^{2}-\xi\right)\right)=\mathbf{0}
$$

This is equivalent to solving

$$
\min (\|\Phi \mathbf{w}-\mathbf{y}\|^{2}+\lambda\|\underbrace{\| \mathbf{w}}\|^{2} \text { penalty is }
$$

for the same choice of λ. This form of regularized regression is often referred to as Ridge regression.

H/w: Argue that given

$$
\omega^{+}=\underset{\omega}{\operatorname{argmin}}\left\|\phi_{\omega}-y\right\|_{2}^{2}
$$

\exists Dual λ st KKT conditions hold \& in particular

$$
\nabla_{\omega^{*}}\left(\|\phi \omega-y\|_{2}^{2}+\lambda\|\omega\|_{2}^{2}\right)=0
$$

Next argue that, if given λ

$$
\widehat{\omega}=\underset{\omega}{\operatorname{argmin}}\|\phi \omega-y\|_{2}^{2}+\lambda\|\omega\|_{2}^{2}
$$

Then $\exists \xi^{\omega}$ for which $\|\hat{\omega}\|_{2}^{2} \leq \xi$

Regression so far

- Linear Regression:
- $y_{i}=w^{\top} \phi\left(x_{i}\right)+b+\epsilon_{i}$, where:
$y_{i} \in \mathbb{R}$, and ϵ_{i} is the error term
- Objective: $\min _{w, b} \sum_{i=1}^{n}\left(y_{i}-w^{\top} \phi\left(x_{i}\right)-b\right)^{2}$
- Ridge Regression: [Hereafter penalty ferm will sit
- $\min _{w, b} \sum^{n}\left(y_{i}-w^{\top} \phi\left(x_{i}\right)-b\right)^{2}+\lambda\|w\|^{2} \quad$ in the objectire?
- Here, regularization is applied on the linear regression objective to reduce overfitting on the training examples (we penalize model complexity)

Closed-form solutions to regression

- Linear regression and Ridge regression both have closed-form solutions
- For linear regression,

$$
w^{*}=\left(\phi^{\top} \phi\right)^{-1} \phi^{\top} y
$$

- For ridge regression,

(for linear regression, $\lambda=0$)
- Claim:

Error obtained on training data after minimizing ridge regression \geq error obtained on training data after minimizing linear regression (larger search space)

- Goal:

Do well on unseen (test) data as well. Therefore, high training error might be acceptable if test error can be lower

