Lecture 08: Support Vector Regression

Instructor: Prof. Ganesh Ramakrishnan



Recap: Duality and KKT conditions

v £ (Ge)
st g:6><DO & hJ-Cx>=O

For the previously mentioned formulation of the problem, KKT
conditions for all differentiable functions (i.e. f, g;, h;) with w primal

optimal and (5\,;1) dual optimal point are:

° Vf(jiv) +>7 )'\ngi(VAV) + 20 1V hi(w) =0 3945
0 gi(w)<0;1<i<m RN |
o N>0:1<i<m <t

o \igi(w)=0;1<i<m
° hi(w)=0;1<j<p
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Bound™@n A in the regularized least square solution

To minimize the error function subject to constraint |w| < &, we
apply KKT conditions at the point of optimality w*

Vi (i) + Ag(w)) =0 — ()

—

(the first KKT condition). Here, filw) = (¢w — Y)T(¢w — Y) and,

gw) =Wl =¢. (Nl £4)

Solving we get,
w' = (6T + A)1gTy —> (soving @)
From the second KKT condition we get,
Wi <¢ (1§ morm s \ef¥
From the third KKT condition, “"SY‘C"}"A. assumc l-?—>
A>0

From the fourth condition b }
)\HW*“2 _ )\6 C(omfltmcnl'afy .S\ac CI'
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Bound on A in the regularized least square solution

Values of w, and A that satisfy all these equations would yield an
optimal solution. Consider,

@To+ Aoy = w
We multiply (¢7é + M) on both sides and obtain,
I(¢"o)w" + ADw"|| = [[6 ]|
Using the triangle inequality we obtain,

I(@"o)w™ || + MW [l = [[(¢To)w™ + ADw*|| = |6 y||
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Bound on A in the regularized least square solution

l(pTd)w*|| < af|w*|| For some « for finite |(¢7¢)w*||. Substituting

in the previous equation, .
(Chz"#hu lmﬂua\lg’ﬁi wduced matnx  mevea:

r (w+ NIl > 167y |A], = sup (1A
o=\l i’“z. I “?— “3,\\!:1
i.e. - ‘ ” A
A o yll i "P‘nz‘ a\so Calle
[[wl FrobemiS novd)
Note that when ||[w*|| — 0, A\ — oco. (Any intuition?) Using J,
HW*”2 S 5 we get' https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
T
N

™

This is not the exact solution of A but the bound proves the existence
of A\ for some £ and ¢.
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Alternative objective function

Substituting g(w) = ||w||? — &, in the first KKT equation considered
earlier:

Vo (iw) + A~ ([w]* =) =0

This is equivalent to solving )BP
oy o v | ) o e’

min(|| dw —y Qo

e \6 PR 99)

for the same choice of A\. This form of regularlzed regressmn is
often referred to as Ridge regression.
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Regression so far

@ Linear Regression:
= WTgb(x,-) + b+ €;, where:
yvi € R, and ¢; is the error term
> Objective: minyp > 1 (vi — w' ¢(x;) — b)? v
. . St
o Ridge Regression: rﬂ :YcOrjbv ‘f‘“"‘“a desrd w\;} )‘“'i?
. ()
> i 0 (i — wT6(x) — b + Al ¥
» Here, regularization is applied on the linear regression objective

to reduce overfitting on the training examples (we penalize
model complexity)
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Closed-form solutions to regression

@ Linear regression and Ridge regression both have closed-form
solutions

» For linear regression,

=(¢'0) o'y
et\a\ case
» For ridge regression, A=0

w
= (@To+ M) 0Ty

(for linear regression, A = 0)
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o Claim:
Error obtained on training data after minimizing ridge regression
> error obtained on training data after minimizing linear
regression (\&-rje# Seacn S‘TN'-B)

e Goal:
Do well on unseen (test) data as well. Therefore, high training
error might be acceptable if test error can be lower
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