Lecture 08: Ridge Regression, Equivalent
Formulations and KKT Conditions

Instructor: Prof. Ganesh Ramakrishnan
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Recap: Duality and KKT conditions

For the previously mentioned formulation of the problem, KKT
conditions for all differentiable functions (i.e. f, g, h;) with w primal

optimal and (X, /2) dual optimal point are:
o VAw)+ Z,lAng( )"‘ijlthh( w) =0
0 gi(w)<0;1<i<m
e>\,-20,1§:§m
o \gi(w)=0;1<i<m
° h(w)=0;1<j<p
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Bound on A in the regularized least square solution

To minimize the error function subject to constraint |w| < &, we
apply KKT conditions at the point of optimality w*

V- (Aw) + Ag(w)) =0
(the first KKT condition). Here, filw) = (¢w — Y)T(¢w — Y) and,

g(w) = [lwl* - ¢.
Solving we get,

w' = (676 + AD) 6Ty

From the second KKT condition we get,

Jw[? < ¢
From the third KKT condition,

A>0
From the fourth condition
Alw[[* = A¢
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Bound on A in the regularized least square solution

Values of w, and A that satisfy all these equations would yield an
optimal solution. Consider,

@To+ Aoy = w
We multiply (¢7é + M) on both sides and obtain,
I(¢"p)w" + ADw"|| = [[6 ]|
Using the triangle inequality we obtain,

(@ o)W || + MWl = [[(¢To)w™ + ADw*|| = |6 y||
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Bound on A in the regularized least square solution

l(pTd)w*|| < af|[w*|| for some « for finite |(¢7¢)w*||. Substituting
in the previous equation,

(o + MWl = [l67y]

N
— [lw
Note that when ||[w*|| — 0, A — oco. (Any intuition?) Using
[w*[|? < € we get,
lo™yl _
Ve
This is not the exact solution of A\ but the bound proves the existence
of A\ for some £ and ¢.

A
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Alternative objective function

Substituting g(w) = ||[w]|? — &, in the first KKT equation considered
earlier:

Vo (w) + A~ ([w]* =€) =0

This is equivalent to solving
min w—=Yy |+ w
in(|| D) 2

for the same choice of A\. This form of regularized regression is
often referred to as Ridge regression.
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Regression so far

o Linear Regression:
= WTgb(x,-) + b+ €;, where:
yvi € R, and ¢; is the error term
> Objective: minyp> 1, (yi— w' d(x;) — b)?
o Ridge Regression:
. 2
> minws > (Vi — w'é(x) = b)* + Aw]
» Here, regularization is applied on the linear regression objective
to reduce overfitting on the training examples (we penalize
model complexity)
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Closed-form solutions to regression

@ Linear regression and Ridge regression both have closed-form
solutions

» For linear regression,
w=(6"9) o'y
» For ridge regression,
W= (¢ o+ A) 1oy

(for linear regression, A = 0)
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o Claim:
Error obtained on training data after minimizing ridge regression
> error obtained on training data after minimizing linear
regression

e Goal:
Do well on unseen (test) data as well. Therefore, high training
error might be acceptable if test error can be lower
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