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Lecture 08: Ridge Regression, Equivalent
Formulations and KKT Conditions

Instructor: Prof. Ganesh Ramakrishnan
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Recap: Duality and KKT conditions

For the previously mentioned formulation of the problem, KKT
conditions for all differentiable functions (i.e. f, gi, hj) with ŵ primal
optimal and (λ̂, µ̂) dual optimal point are:

∇f(ŵ) +
∑m

i=1 λ̂i∇gi(ŵ) +
∑p

j=1 µ̂j∇hj(ŵ) = 0

gi(ŵ) ≤ 0; 1 ≤ i ≤ m
λ̂i ≥ 0; 1 ≤ i ≤ m
λ̂igi(ŵ) = 0; 1 ≤ i ≤ m
hj(ŵ) = 0; 1 ≤ j ≤ p
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Bound on λ in the regularized least square solution
To minimize the error function subject to constraint |w| ≤ ξ, we
apply KKT conditions at the point of optimality w∗

∇w∗(f(w) + λg(w)) = 0
(the first KKT condition). Here, f(w) = (ϕw − Y)T(ϕw − Y) and,
g(w) = ∥w∥2 − ξ.
Solving we get,

w∗ = (ϕTϕ+ λI)−1ϕTy
From the second KKT condition we get,

∥w∗∥2 ≤ ξ

From the third KKT condition,
λ ≥ 0

From the fourth condition
λ∥w∗∥2 = λξ

February 4, 2016 3 / 9



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bound on λ in the regularized least square solution

Values of w∗ and λ that satisfy all these equations would yield an
optimal solution. Consider,

(ϕTϕ+ λI)−1ϕTy = w∗

We multiply (ϕTϕ+ λI) on both sides and obtain,

∥(ϕTϕ)w∗ + (λI)w∗∥ = ∥ϕTy∥

Using the triangle inequality we obtain,

∥(ϕTϕ)w∗∥+ (λ)∥w∗∥ ≥ ∥(ϕTϕ)w∗ + (λI)w∗∥ = ∥ϕTy∥
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Bound on λ in the regularized least square solution
∥(ϕTϕ)w∗∥ ≤ α∥w∗∥ for some α for finite |(ϕTϕ)w∗∥. Substituting
in the previous equation,

(α + λ)∥w∗∥ ≥ ∥ϕTy∥

i.e.
λ ≥ ∥ϕTy∥

∥w∗∥
− α

Note that when ∥w∗∥ → 0, λ → ∞. (Any intuition?) Using
∥w∗∥2 ≤ ξ we get,

λ ≥ ∥ϕTy∥√
ξ

− α

This is not the exact solution of λ but the bound proves the existence
of λ for some ξ and ϕ.
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Alternative objective function

Substituting g(w) = ∥w∥2 − ξ, in the first KKT equation considered
earlier:

∇w∗(f(w) + λ · (∥w∥2 − ξ)) = 0
This is equivalent to solving

min(∥ Φw − y ∥2 +λ ∥ w ∥2)

for the same choice of λ. This form of regularized regression is
often referred to as Ridge regression.
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Regression so far

Linear Regression:
▶ yi = w⊤ϕ(xi) + b + ϵi, where:

yi ∈ R, and ϵi is the error term
▶ Objective: minw,b

∑n
i=1(yi − w⊤ϕ(xi)− b)2

Ridge Regression:
▶ minw,b

∑n
i=1(yi − w⊤ϕ(xi)− b)2 + λ∥w∥2

▶ Here, regularization is applied on the linear regression objective
to reduce overfitting on the training examples (we penalize
model complexity)
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Closed-form solutions to regression

Linear regression and Ridge regression both have closed-form
solutions

▶ For linear regression,

w∗ = (ϕ⊤ϕ)−1ϕ⊤y

▶ For ridge regression,

w∗ = (ϕ⊤ϕ+ λI)−1ϕ⊤y

(for linear regression, λ = 0)
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Claim:
Error obtained on training data after minimizing ridge regression
≥ error obtained on training data after minimizing linear
regression
Goal:
Do well on unseen (test) data as well. Therefore, high training
error might be acceptable if test error can be lower
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