Lecture 09: Lasso and Support Vector Regression
Instructor: Prof. Ganesh Ramakrishnan
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Recap: Duality and KKT conditions

For the previously mentioned formulation of the problem, KKT
conditions for all differentiable functions (i.e. f, g;, h;) with w primal

optimal and (X, /1) dual optimal point are:
o VAw)+ 2,1)‘ng( )"‘ijl,UJVh( w) =0
0 gi(w)<0;1<i<m
o>\,-20,1§/§m
o \gi(w)=0;1<i<m
° hi(w)=0;1<j<p
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Equivalence of the two formulations of regularized

least square
Formulation 1:

. 1
w,m <Jn _&fx(W) = 2HY—¢WH2 4 AHWsz ?maﬂg

; Vevso
Formulation 2: W g 0 s So\n &H Sowne
® 501 LN n }-
» . 9 2
«— Mming —|ly—¢w||” s.t. ||W||"—1n <0 i ConsFrain
W) ey, mine 5lly—owll st il —n < shan ed

The Lagrangian for Formulation 2 is:
1
L(w, ) = Slly—owl? + a(|[wlf* - 1)

Necessary conditions for optimality for Formulation 1 are:

" \l ‘F{G‘n*‘
Ve AW =0 W C";s,km\m Yest
where w*(\) is the optimal solution for a given \.
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Equivalence of the two formulations of regularized

least square

(constain UX)
@ For Formulation 2, the KKT conditions imply that we have:
Vw fa(w") = 0 and o*(||w*]|2 =) = 0, a* > 0. (& \jmm‘“':f
o If formulation 1 is solved for a given A and its solution s w*(A)

then N
> by setting n = [[w*"()) 22, you get that o* = )\ and @
w* = w*(\) satisfy the KKT conditions for formulation 2,
showing that both formulations have the same solution.
» if you solved formulation 2 and set A = o™, you attain the same
solution as attained by solving Problem 1.
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Choice of regularizer and regularization parameter

@ How do we decide which value of A to choose for the

Eregularizer? How about choosing the regularization parameter \
through cross-validation?

°

Recall the polynomial curve fitting problem we considered
earlier. As we increased the degree of the polynomial how will
the training error wary? What about the test error? And what is

the effect of varying A on train and test errors? (ﬁ'f-“f-m‘ Co3et

7 A=0DWo coeftrawnt of
@ How about a different regularizer? M\\gf‘? \eost Wan ’

» Lasso: When the L; norm is used (instead 2 as in ridge -
regression). Rg,\o\mut) \\\A\\
@ How about a different error function?

» Support Vector Regression. Qtv\m‘.\_} \\¢\N \’\\b
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Lasso: Continuing from Quiz 1, Problem 3

w* = argmin|¢w —y||* s.t. [lw], <, (1)

W
where

ol = (i) @)

@ Since||wl||, is not differentiable, one can express (2) as a set of X

constraints e d

Zfi <n w <& —w <& BS\J:}S\:E‘\.

@ The resulting problem is a linearly constramed Quadratlc N

timizati blem (LCQP): ndard zodan
optimization problem (LCQ (53(0. daed. *\56 e LC&)

w —argm|n||gz5w y|? s.t. Z&Sn, wi < &, —w; <&

i=1

(’\\1‘

(3)
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Lasso: Continued Bt — Lograny ot for g
e KKT conditions: PANE ] P angL oY ’S‘“ Wtk
B 7 Loeant vk fov g -
Q}o'o < 207w —26Ty + > (6~ \) =0

i=1

——
\0,45 A\w B2

A\ @a’;‘ <« B Z & - \ﬂiﬁl
AN

N g :
Vi 9,-(wi &) =0 and \(—w; — &) =0
o Like Ridge Regression, an equivalent Lasso formulation can be
shown to be:

w’ = argmin|jow — vl + Allwll, v\w‘*“' (4)

o' & T
@ The justification for the equivalence between-_é and (4) as well

as the solution to (4) requires subgradient.
R TR



Subgradients ' Geanevoh zohwe 7)) «x@&%
adent :
08' geadh en b

@ An equivalent condition for convexity of f(x):

®

V x,y € dmn(f), f(y) > f(x) + V' (x)(y — x)

@ g¢(x) is a subgradient for a function f at x if

¥y € dmn(f), f(y) > f(x) + ge(x) (y — X

3P

@ Any convex (even non-differentiable) function will have a
subgradient at any point in the domain!

e If a convex function fis differentiable at x then Vf(x) = g¢(x)

@ x is a point of minimum of (convex) fif and only if O is a
subgradient of fat x =3 58(.5,) =0
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Subgradients and Lasso

e Claim (out of syllabus): If w*(n) is solution to (2) and w*(\) is
solution to (4) then
> Solution to (2) with n = [[w*(A)][is also w*(A) and
» Solution to (4) with \ as solution to ¢7(¢w — y) = Agx is also
w*(n)
@ The unconstrained form for Lasso in (4) has no closed form
solution 1 yeuwt \\4)00-1\\;:-‘\'7\“"5“1_
e But it can b‘g solved using a generalization of gradient descent
called proximal subgradient descent?

L
E Lernenb % Stoks M
Py esented N ey Tom-)

'https://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b. pdf
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Proximal Subgradient Descent for Lasso?
CioTA=1terahye Sefy TrveshaldO),

6 U

AALS ool poqe
5% Letetw) =fow -y 0 TS BT ) oCx
—= o Proximal Subgradient Descent Algonthm @.’:\\ :: b:’b (,,

Initialization: Find starting point w(° /) \bo-oso o‘\

+

= Y s Let Wt be a next gradient descent iterate for'e(w¥)

~ » Compute w1 = argmin||w — wk1D||2 4 \t||w]||1 by

2 g min| [0 — <3 s by

oy 0,, setting subgradient of this objective to 0. This results in:
b4 D

at)
~
£ m“!io If 5T > At, then Wi Y =
> o A(k+1) (k+1) A(k+1)
w £ Ifw <=At, then w; )\t—i— neh
h—{t S'_\LG sy\aa‘ﬂ

E.'?s ':",? Q0 otherwise.
S F-x Setk=k+1, until - stopping criterion |§ Satishe such as no

significant changes in wk wort wk- 1))

’https://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b. pdf
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Choice of regularizer and regularization parameter

@ How do we decide which value of A to choose for the
regularizer? How about choosing the regularization parameter A
through cross-validation?

@ Recall the polynomial curve fitting problem we considered
earlier. As we increased the degree of the polynomial how will
the training error wary? What about the test error? And what is
the effect of varying \ on train and test errors?

@ How about a different regularizer?

» Lasso: When the L; norm is used (instead of Ly as in ridge
regression).

@ How about a different error function?
» Support Vector Regression.

February 4, 2016 11 /16




Support Vector Regression



. . A
Polynomial regression: <F_, Y'x.‘ L Ly X2 XKy -—-]

@ Consider a degree 3
polynomial regression model
as shown in the figure

20
1

10

@ Each bend in the curve
- corresponds to increase in

“WH (oﬂ\(%’ \“&"
e Eigen values of (¢ ¢ + )\l)

are indicative of curvature.
0 M & @ W W Increasing A reduces the

X curvature
n'fg‘

N\ \ot
Con T 5'-\' s"i"“ ujn \osS sf\

-10
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7 ' e bana

@ Any point in the band (of €) is not penalized. Thus the loss
function is known as e-insensitive loss

@ Any point outside the band is penalized, and has slackness &; or
&

@ The SVR model curve may not pass through any training point
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i
@ The tolerance ¢ is fixed &eﬁ\u\\n“ K'\-:
@ It is desirable that Vi J/ . wa\r\’(ﬁa

s yi—w () —b< et ’SW
» b+ wlo(x) —yi<e+ & f

N\, L
b@:\“\‘ﬁ &b@.’h

i- 4 Z:‘ = S\ek vasiades (\\\'-

PTads

] February 4, 2016 15 / 16



SVR objective

@ 1-norm regularized:
> mingbeer 5wl + Ci&+ &)

s.t. Vi,

yi—w' o(x) —b<e+&;,
T A *

b.“‘*W o(xi) —yi < e+ &, ‘d\& b

glvfi >0 W) ol

N
@ 2-norm regularized: SJ_,‘(\‘SS &.\"
. . N
> mingpeer 3wll® + CY (62 + &) 'S Ne

s.t. Vi,
yi—wlo(x) —b<e+¢,
b+wlo(x) -y <e+é&f
» Here, the constraints ;, £ > 0 are not necessary
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Try deriving the KKT conditions for the two norm
regularized Support Vector Regression problem on slide 18




