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Lecture 09: Lasso and Support Vector Regression
Instructor: Prof. Ganesh Ramakrishnan
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Recap: Duality and KKT conditions

For the previously mentioned formulation of the problem, KKT
conditions for all differentiable functions (i.e. f, gi, hj) with ŵ primal
optimal and (λ̂, µ̂) dual optimal point are:

∇f(ŵ) +
∑m

i=1 λ̂i∇gi(ŵ) +
∑p

j=1 µ̂j∇hj(ŵ) = 0

gi(ŵ) ≤ 0; 1 ≤ i ≤ m
λ̂i ≥ 0; 1 ≤ i ≤ m
λ̂igi(ŵ) = 0; 1 ≤ i ≤ m
hj(ŵ) = 0; 1 ≤ j ≤ p
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Equivalence of the two formulations of regularized
least square
Formulation 1:

minw fλ(w) =
1
2 ||y−ϕw||2 + λ||w||2

Formulation 2:

minw
1

2
||y−ϕw||2 s.t. ||w||2 − η ≤ 0

The Lagrangian for Formulation 2 is:

L(w, λ) =
1
2 ||y−ϕw||2 + α(||w||2 − η)

Necessary conditions for optimality for Formulation 1 are:
∇w fλ(w∗(λ)) = 0

where w∗(λ) is the optimal solution for a given λ.
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Equivalence of the two formulations of regularized
least square

For Formulation 2, the KKT conditions imply that we have:
∇w fα(w∗) = 0 and α∗(||w∗||2 − η) = 0, α∗ ≥ 0.
If formulation 1 is solved for a given λ and its solution is w∗(λ)
then

▶ by setting η = ||w∗(λ)||2, you get that α∗ = λ and
w∗ = w∗(λ) satisfy the KKT conditions for formulation 2,
showing that both formulations have the same solution.

▶ if you solved formulation 2 and set λ = α∗, you attain the same
solution as attained by solving Problem 1.
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Choice of regularizer and regularization parameter

How do we decide which value of λ to choose for the
regularizer? How about choosing the regularization parameter λ
through cross-validation?
Recall the polynomial curve fitting problem we considered
earlier. As we increased the degree of the polynomial how will
the training error wary? What about the test error? And what is
the effect of varying λ on train and test errors?
How about a different regularizer?

▶ Lasso: When the L1 norm is used (instead of L2 as in ridge
regression).

How about a different error function?
▶ Support Vector Regression.

February 4, 2016 5 / 16



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lasso: Continuing from Quiz 1, Problem 3

w∗ = argmin
w

∥ϕw − y∥2 s.t. ∥w∥1 ≤ η, (1)

where
∥w∥1 =

( n∑
i=1

|wi|
)

(2)

Since ∥w∥1 is not differentiable, one can express (2) as a set of
constraints

n∑
i=1

ξi ≤ η, wi ≤ ξi, −wi ≤ ξi

The resulting problem is a linearly constrained Quadratic
optimization problem (LCQP):

w∗ = argmin
w

∥ϕw − y∥2 s.t.
n∑

i=1
ξi ≤ η, wi ≤ ξi, −wi ≤ ξi

(3)
February 4, 2016 6 / 16
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Lasso: Continued
KKT conditions:

2(ϕTϕ)w − 2ϕTy +
n∑

i=1
(θi − λi) = 0

β(
n∑

i=1

ξi − η) = 0

∀ i, θi(wi − ξi) = 0 and λi(−wi − ξi) = 0
Like Ridge Regression, an equivalent Lasso formulation can be
shown to be:

w∗ = argmin
w

∥ϕw − y∥2 + λ∥w∥1 (4)

The justification for the equivalence between (2) and (4) as well
as the solution to (4) requires subgradient.
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Subgradients

An equivalent condition for convexity of f(x):

∀ x,y ∈ dmn(f), f(y) ≥ f(x) +∇⊤f(x)(y − x)

gf(x) is a subgradient for a function f at x if

∀ y ∈ dmn(f), f(y) ≥ f(x) + gf(x)⊤(y − x)

Any convex (even non-differentiable) function will have a
subgradient at any point in the domain!
If a convex function f is differentiable at x then ∇f(x) = gf(x)
x is a point of minimum of (convex) f if and only if 0 is a
subgradient of f at x
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Subgradients and Lasso

Claim (out of syllabus): If w∗(η) is solution to (2) and w∗(λ) is
solution to (4) then

▶ Solution to (2) with η = ||w∗(λ)|| is also w∗(λ) and
▶ Solution to (4) with λ as solution to ϕT(ϕw − y) = λgx is also

w∗(η)

The unconstrained form for Lasso in (4) has no closed form
solution
But it can be solved using a generalization of gradient descent
called proximal subgradient descent1

1https://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b.pdf
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Proximal Subgradient Descent for Lasso2

Let ε(w) =∥ϕw − y∥2
2

Proximal Subgradient Descent Algorithm:
Initialization: Find starting point w(0)

▶ Let ŵ(k+1) be a next gradient descent iterate for ε(wk)
▶ Compute w(k+1) = argmin

w
||w − ŵ(k+1)||22 + λt||w||1 by

setting subgradient of this objective to 0. This results in:
1 If ŵ(k+1)

i > λt, then w(k+1)
i = −λt + ŵ(k+1)

i
2 If ŵ(k+1)

i < λt, then w(k+1)
i = λt + ŵ(k+1)

i
3 0 otherwise.

▶ Set k = k + 1, until stopping criterion is satisfied (such as no
significant changes in wk w.r.t w(k−1))

2https://www.cse.iitb.ac.in/~cs709/notes/enotes/lecture27b.pdf
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Choice of regularizer and regularization parameter

How do we decide which value of λ to choose for the
regularizer? How about choosing the regularization parameter λ
through cross-validation?
Recall the polynomial curve fitting problem we considered
earlier. As we increased the degree of the polynomial how will
the training error wary? What about the test error? And what is
the effect of varying λ on train and test errors?
How about a different regularizer?

▶ Lasso: When the L1 norm is used (instead of L2 as in ridge
regression).

How about a different error function?
▶ Support Vector Regression.
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Support Vector Regression
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Polynomial regression

Consider a degree 3
polynomial regression model
as shown in the figure
Each bend in the curve
corresponds to increase in
∥w∥
Eigen values of (ϕ⊤ϕ+ λI)
are indicative of curvature.
Increasing λ reduces the
curvature
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Any point in the band (of ϵ) is not penalized. Thus the loss
function is known as ϵ-insensitive loss
Any point outside the band is penalized, and has slackness ξi or
ξ∗i
The SVR model curve may not pass through any training point
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The tolerance ϵ is fixed
It is desirable that ∀i:

▶ yi − w⊤ϕ(xi)− b ≤ ϵ+ ξi
▶ b + w⊤ϕ(xi)− yi ≤ ϵ+ ξ∗i
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SVR objective

1-norm regularized:
▶ minw,b,ξi,ξ∗i

1
2∥w∥2 + C

∑
i(ξi + ξ∗i )

s.t. ∀i,
yi − w⊤ϕ(xi)− b ≤ ϵ+ ξi,
b + w⊤ϕ(xi)− yi ≤ ϵ+ ξ∗i ,
ξi, ξ∗i ≥ 0

2-norm regularized:
▶ minw,b,ξi,ξ∗i

1
2∥w∥2 + C

∑
i(ξ

2
i + ξ∗2i )

s.t. ∀i,
yi − w⊤ϕ(xi)− b ≤ ϵ+ ξi,
b + w⊤ϕ(xi)− yi ≤ ϵ+ ξ∗i

▶ Here, the constraints ξi, ξ∗i ≥ 0 are not necessary
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