Lecture 09-b: Support Vector Regression in some

details
Instructor: Prof. Ganesh Ramakrishnan
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KKT and Dual for SVR

o minee SIwl* + CYE +€)
s.t. Vi,
yi—wlo(x) —b<e+&,
b+ w'o(x) —yi < e+ &,
§i,&0 =0
@ Let's consider the lagrange multipliers «;, of, p; and p}
corresponding to the above-mentioned constraints respectively.
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KKT conditions

o Differentiating the Lagrangian w.r.t. w,
w — aid(x;) + ajp(x;) = 0
e w=321 (ai— af)d(x)

o Differentiating the Lagrangian w.r.t. &,
C—ai—pi=0
ie. aj+pi=C

o Differentiating the Lagrangian w.r.t £,
af +uf=C

o Differentiating the Lagrangian w.r.t b,
>laf —ai) =0

o Complimentary slackness:
ai(yi — Tﬁb(xi) —b—e—-¢&)=0

wi&i =0
af(b+wlo(x) —yi—e—&) =0
pi&i =0
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Conclusions from the KKT conditions:

o € (0, C) =7

ai € (0,C) =7



@ The primal objective and constraints are convex = KKT
conditions here necessary and sufficient and strong duality holds

o w=> 7 (a;—af)p(x;) = the final decision function
fx) = wio(x) = 321 (i = af)o T (x)o(x)

@ The dual optimization problem to compute the a's for SVR is:

1
maxa,ar — 5 D0 D (i = ad)(a; — a)o” ()5 (x)
i

—€ Z(a; +af) + ny(Oéi —aj)

s.t.
» > (ai—af) =0
» aj,af €10,
o We notice that the only way these three expressions
involve ¢ is through ¢" (x,)¢(x;) = K(x;, x;), for some i, j
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How about Ridge Regression?
@ Recall for Ridge Regression: w= (®7® + \/)~1®Ty, where,

d1(x) o Pp(x)
b =
O1(Xm) o Pp(Xm)

g

o (@7®). =37, dilxi)oj(xc) whereas
(@27). = >0, du(xi)ul(x) = K(xi, X))

y

and
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How about Ridge Regression?

e Given w= (®7® + \/)~1®Ty and using the identity
(P'+B"™R'B)"'B"R= PBT(BPB" + R)~!
» = w=0T(@dT + M) ly =" «a;d(x;) where
ap = <(<I><I>T+ )\/)_ly> '
» = the final decision function
fix) = ¢T(x)w =21 i (x)¢(x)
e Again, We notice that the only way the decision function
f(x) involves ¢ is through ¢ (x;)¢(x;), for some i, j
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The Kernel function in Ridge Regression

o We call " (x1)¢(x2) a kernel function:
Kixi, %) = ¢ (x1)¢(x)
@ The preceding expression for decision function becomes

fx) = 22 aiKix x)
where o = (([K(xi, x;)] + A)~ty),
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The Kernel function in SVR

@ Again, involving the kernel function:

K(xi, x2) = ¢ (x1)o(x2)

@ The dual problem becomes:
1 * *
MaXeia; — 5 > (= af) (o — o )K(x; %)
i
—e Z(oz,— +af) + Zy;(a,- —af)

s.t.
> > fai—af) =0
» aj,af €10,
@ The decision function becomes:
) = 3o — 0} K(x. %) + b
o We will see that, often, computing K(x;, x2) does not even
require computing ¢(x;) or ¢(x) explicitly
a0 YT



An example

o Let K(x1, %) = (1 + x{ x0)?
o What ¢(x) will give ¢ (x1)p(x2) = K(x1, %) = (1 + x{ x2)?
@ Is such a ¢ guaranteed to exist?

@ Is there a unique ¢ for given K?
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@ We can prove that such a ¢ exists

@ For example, for a 2-dimensional x;:

1
Xi1 \/5
. Xi2 \/§
d)(XI) B Xi1X1‘2\/§
X

X3

[)

@ ¢(x;) exists in a 5-dimensional space
@ Thus, to compute K(x, x2), all we need is xlTxg, and there is no
need to compute ¢(x;)
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Introduction to the Kernel Trick (more later)

o Kernels operate in a high-dimensional, implicit feature space
without ever computing the coordinates of the data in that
space, but rather by simply computing the Kernel function

@ This approach is called the "kernel trick” and will talk about
valid kernels in the next class

@ This operation is often computationally cheaper than the explicit
computation of the coordinates
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Sequential Minimal Optimization (SMO) for SVR

@ It can be shown that the objective:
maXu;ar — % Zizj'(ai - O‘?)(O‘j - 057)(/51— (XI)¢()9>
—ey fai+ai) + 32 yilai — af)
@ can be written as:
maxg — 3 3.5 Bi80" (x)d(x;) — € 1Bl + 32, vii
s.t.
> >iBi=0
» §; € [—C, C], Vi
@ The SMO subroutine can be defined as:

Q |Initialise 31, ..., B, to some value € [-C, (]
@ Pick 3j, B; to estimate next (i.e. estimate 3", ﬂj”e"")
© Check if the KKT conditions are satisfied
* If not, choose f3; and f3; that worst violate the KKT conditions
and reiterate
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Least Squares SVM

@ LS-SVM gives an SVR formulation that gives closed form
solution just like linear or ridge regression (since SVR deals with
a continous valued predicition)

o minys 3 [lwl® + § 37, (vi — (W6 (x) + b))*

@ Here, e=0

o lts difference with Ridge regression is that here b is not captured
within w, and b is not minimized as ||w||* is
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Solution of LS-SVM

@ The objective function is convex in w and b

@ Thus, V,, ,L(w", b*) = 0 is a necessary and sufficient condition
for optimality

@ w.r.t w, we have:
w2373 (0" (x)e0x)w+2 3 (yi — b)o(xi) =0

@ w.r.t b, we have:
nb+ 326" (x)w—y;) =0

@ Unlike previous formulations which had linear inequalities here
we have only linear equalities, which can be solved

L February 9, 2016 15 / 26



Thus, we obtain the closed form solution:

0

1 1
w=(K'K+ = Dty

where
° ¢i = P(x))
o Kj=9¢'(x)0(x) = K(x;,x)

L E—

16 / 26



@ LS-SVM gives us a closed-form expression for w. But this
"speed” is only possible for linear kernels (which have ¢
computed anyway). No implicit computation of K for a higher
dimensional ¢ is possible

@ We will make a similar observation for SVM for classification,
where a linear time algorithm can be formulated for linear SVM
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For a given K, how to show that ¢ exists, without
constructing a ¢?

@ Mercer kernel
o Positive-definite kernel

@ The Mercer kernel and Positive-definite kernel turn out to be
equivalent definitions of kernel if the input space {x} is compact
(every Cauchy sequence is convergent).
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Mercer's theorem

e Mercer kernel: K(x;,x3) is a Mercer kernel if
[ [ K(x1,x2)g(x1)g(x2) dxidxo > 0 for all square integrable
functions g(x)
(that is, [(g(x))* dx is finite)
o Mercer’s theorem:
An implication of the theorem is that
for any Mercer kernel K(x1,x2), 3¢(x) : R" — H,
st. K(xi, %) = ¢ (x1)o(x)
where H is a Hilbert space, which is an inner product space with
associated norms, where every Cauchy sequence is convergent

Do you know Hilbert? No? Then what are you doing in his space? :)
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Prove that (x| x;)¢ is a Mercer kernel (d € Z™,
d>1)

@ We want to prove that

for all square integrable functions g(x)

@ Here, x; and xy are vectors
@ Thus, le fXQ(xlTXQ)dg(xl)g(XQ) dxy dxy
= qu .. let fle .. me[an”nt ﬁ H;zl(XUXQJ')nj] g(Xl)g(XQ) Xml--dxlth21--dX2t

s.t. Zi n; = d
(taking a leap)
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Prove that (x| x;)¢ is a Mercer kernel (d € Z™,
d>1)

= //HxleQJ )8(x2) dxdxo

n1 At X2 =1

=Y [ o g (i gl d o

'71 nt

=Y T Xt ) [ (0 et o)

n...ng X1 X2

(integral of decomposable product as product of integrals)
st. > ,nj=d
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Prove that (x| x;)¢ is a Mercer kernel (d € Z™,
d>1)

@ Realize that both the integrals are basically the same, with
different variable names

@ Thus, the equation becomes:

d
2 m!...n! </Xl(xﬁ L xip)g(x) dx)? > 0

ni...nt

(the square is non-negative for reals)

d

@ Thus, we have shown that (x] x;)? is a Mercer kernel.
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What about >° | ag(x! x0)9 s.t. g > 07

o Kixi,x2) = D ogoy ag(X{ x2)¢
ols fxl fX2<Z:/=1 ag(x] x2)?) g(x1)g(x2) dxydxy > 07
o We have

/X1 / Qr: aq(x{ x2)9) 8(x1)8(x2) dxidx;

X2 d=1

= Zad/ /(xlTx2)dg(x1)g(x2) dxq dxo
d=1 X1 VX2

] February 9, 2016

23 /26



What about >° | ag(x! x0)9 s.t. g > 07

o We have already proved that [ [ (x/x)%(x1)g(x) dxidx; > 0
@ Also, ag > 0, Vd

@ Thus,
Zad/ / x1 x2 g(x1)g(x2) dxidxy > 0
X2

e By which, K(x1,x) = Y1, aa(x{ x2)? is a Mercer kernel.

L R e 2



Kernels in SVR

@ Note that the dual:
maxe,o; — 457,57 (00— a7 (g — )BT ()00) — € 3o+
o) + Y v - at)
and the decision function:
flx) = 2i(ai — af)@T (x)d(x) + b
are all in terms of the dot product ¢ ' (x;)¢(x;) only

@ Therefore, one could employ kernels in SVR to implicitly perform
linear regression in higher dimensional spaces
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target

Support Vector Regression

3 .
— RBF model
— Linear model
25 . — Polynomial model |]
es e data
1 - B
ol |
-1} -
-2+ . -
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31 0 1 2 3 4 5 6
data
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