Lecture 09-b: Support Vector Regression in some details

Instructor: Prof. Ganesh Ramakrishnan

KKT and Dual for SVR

- $\min_{w,b,\xi_{i},\xi_{i}^{*}} \frac{1}{2} ||w||^{2} + C \sum_{i} (\xi_{i} + \xi_{i}^{*})$ s.t. $\forall i$, $y_{i} - w^{T} \phi(x_{i}) - b \leq \epsilon + \xi_{i}$, $b + w^{T} \phi(x_{i}) - y_{i} \leq \epsilon + \xi_{i}^{*}$, $\xi_{i}, \xi_{i}^{*} > 0$
- Let's consider the lagrange multipliers α_i , α_i^* , μ_i and μ_i^* corresponding to the above-mentioned constraints respectively.

KKT conditions

- Differentiating the Lagrangian w.r.t. w, $w \alpha_i \phi(x_i) + \alpha_i^* \phi(x_i) = 0$ i.e. $w = \sum_{i=1}^n (\alpha_i - \alpha_i^*) \phi(x_i)$
- Differentiating the Lagrangian w.r.t. ξ_i , $C \alpha_i \mu_i = 0$ i.e. $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t ξ_i^* , $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b, $\sum_{i}(\alpha_{i}^{*}-\alpha_{i})=0$
- Complimentary slackness:

$$\alpha_i (\mathbf{y}_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - \mathbf{b} - \epsilon - \xi_i) = 0$$

$$\mu_i \xi_i = 0$$

$$\alpha_i^* (\mathbf{b} + \mathbf{w}^\top \phi(\mathbf{x}_i) - \mathbf{y}_i - \epsilon - \xi_i^*) = 0$$

$$\mu_i^* \xi_i^* = 0$$

Conclusions from the KKT conditions:

$$\alpha_i \in (0, C) \Rightarrow ?$$

$$\alpha_i^* \in (0, C) \Rightarrow ?$$

- The primal objective and constraints are convex ⇒ KKT conditions here necessary and sufficient and strong duality holds
- $w = \sum_{i=1}^{n} (\alpha_i \alpha_i^*) \phi(x_i) \Rightarrow$ the final decision function $f(x) = w^T \phi(x) = \sum_{i=1}^{n} (\alpha_i \alpha_i^*) \phi^T(x_i) \phi(x)$
- The dual optimization problem to compute the α 's for SVR is:

$$\begin{aligned} \max_{\alpha_i, \alpha_i^*} &- \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) \\ &- \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) \end{aligned}$$

s.t.

- $\quad \alpha_i, \alpha_i^* \in [0, C]$
- We notice that the only way these three expressions involve ϕ is through $\phi^{\top}(x_i)\phi(x_j)=K(x_i,x_j)$, for some i,j

How about Ridge Regression?

• Recall for Ridge Regression: $w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$, where,

$$\Phi = \begin{bmatrix} \phi_1(\mathbf{x}_1) & \dots & \phi_p(\mathbf{x}_1) \\ \dots & \dots & \dots \\ \phi_1(\mathbf{x}_m) & \dots & \phi_p(\mathbf{x}_m) \end{bmatrix}$$

and

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \dots \\ y_m \end{bmatrix}$$

• $(\Phi^T \Phi)_{ij} = \sum_{k=1}^m \phi_i(x_k) \phi_j(x_k)$ whereas $(\Phi \Phi^T)_{ii} = \sum_{k=1}^p \phi_k(x_i) \phi_k(x_j) = K(x_i, x_j)$

How about Ridge Regression?

- Given $w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$ and using the identity $(P^{-1} + B^T R^{-1} B)^{-1} B^T R = PB^T (BPB^T + R)^{-1}$
 - $\Rightarrow w = \Phi^{T} (\Phi \Phi^{T} + \lambda I)^{-1} y = \sum_{i=1}^{m} \alpha_{i} \phi(x_{i}) \text{ where}$ $\alpha_{i} = \left((\Phi \Phi^{T} + \lambda I)^{-1} y \right)_{i}$
 - ▶ ⇒ the final decision function $f(x) = \phi^T(x) w = \sum_{i=1}^m \alpha_i \phi^T(x) \phi(x_i)$
- Again, We notice that the only way the decision function f(x) involves ϕ is through $\phi^{\top}(x_i)\phi(x_j)$, for some i,j

The Kernel function in Ridge Regression

- We call $\phi^{\top}(x_1)\phi(x_2)$ a **kernel function**: $K(x_1, x_2) = \phi^{\top}(x_1)\phi(x_2)$
- The preceding expression for decision function becomes $f(x) = \sum_{i=1}^{m} \alpha_i K(x, x_i)$ where $\alpha_i = (([K(x_i, x_i)] + \lambda I)^{-1}y)_i$

The Kernel function in SVR

- Again, involving the **kernel function**: $K(x_1, x_2) = \phi^{\top}(x_1)\phi(x_2)$
- The dual problem becomes:

$$\begin{aligned} \max_{\alpha_i, \alpha_i^*} &- \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \textit{K}(\textit{x}_i, \textit{x}_j) \\ &- \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i \textit{y}_i (\alpha_i - \alpha_i^*) \end{aligned}$$

s.t.

$$\sum_{i} (\alpha_i - \alpha_i^*) = 0$$

$$\qquad \qquad \alpha_i, \alpha_i^* \in [0, C]$$

• The decision function becomes:

$$f(x) = \sum_{i} (\alpha_i - \alpha_i^*) K(x_i, x) + b$$

• We will see that, often, computing $K(x_1, x_2)$ does not even require computing $\phi(x_1)$ or $\phi(x_2)$ explicitly

An example

• Let
$$K(x_1, x_2) = (1 + x_1^{\top} x_2)^2$$

- What $\phi(x)$ will give $\phi^{\top}(x_1)\phi(x_2) = K(x_1, x_2) = (1 + x_1^{\top}x_2)^2$
- Is such a ϕ guaranteed to exist?
- Is there a unique ϕ for given K?

- ullet We can prove that such a ϕ exists
- For example, for a 2-dimensional x_i :

$$\phi(x_i) = \begin{bmatrix} 1 \\ x_{i1}\sqrt{2} \\ x_{i2}\sqrt{2} \\ x_{i1}x_{i2}\sqrt{2} \\ x_{i1}^2 \\ x_{i2}^2 \end{bmatrix}$$

- $\phi(x_i)$ exists in a 5-dimensional space
- Thus, to compute $K(x_1, x_2)$, all we need is $x_1^{\top} x_2$, and there is no need to compute $\phi(x_i)$

Introduction to the Kernel Trick (more later)

- Kernels operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the Kernel function
- This approach is called the "kernel trick" and will talk about valid kernels in the next class
- This operation is often computationally cheaper than the explicit computation of the coordinates

Sequential Minimal Optimization (SMO) for SVR

• It can be shown that the objective:

$$\begin{array}{l} \max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(\mathbf{x_i}) \phi(\mathbf{x_j}) \\ -\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i \mathbf{y_i} (\alpha_i - \alpha_i^*) \end{array}$$

can be written as:

$$\max_{\beta_i} - \frac{1}{2} \sum_i \sum_j \beta_i \beta_j \phi^\top(x_i) \phi(x_j) - \epsilon \sum_i |\beta_i| + \sum_i y_i \beta_i$$
 s.t.

- $\sum_{i} \beta_{i} = 0$
- $\beta_i \in [-C, C], \forall i$
- The SMO subroutine can be defined as:
 - **1** Initialise β_1, \ldots, β_n to some value $\in [-C, C]$
 - 2 Pick β_i , β_j to estimate next (i.e. estimate β_i^{new} , β_i^{new})
 - Check if the KKT conditions are satisfied
 - * If not, choose β_i and β_j that worst violate the KKT conditions and reiterate

Least Squares SVM

- LS-SVM gives an SVR formulation that gives closed form solution just like linear or ridge regression (since SVR deals with a continuous valued predicition)
- $\min_{w,b} \frac{1}{2} ||w||^2 + \frac{c}{2} \sum_{i=1}^{n} (y_i (w^T \phi(x_i) + b))^2$
- $\bullet \ \ {\rm Here,} \ \epsilon = 0$
- Its difference with Ridge regression is that here b is not captured within w, and b is not minimized as $\|w\|^2$ is

Solution of LS-SVM

- The objective function is convex in w and b
- Thus, $\nabla_{w,b}L(w^*,b^*)=0$ is a necessary and sufficient condition for optimality
- w.r.t w, we have: $w + 2\sum_{i}\sum_{j}(\phi^{\top}(x_i)\phi(x_j))w + 2\sum_{i}(y_i b)\phi(x_i) = 0$
- w.r.t b, we have: $nb + \sum_{i} (\phi^{\top}(x_i)w - y_i) = 0$
- Unlike previous formulations which had linear inequalities here we have only linear equalities, which can be solved

Thus, we obtain the closed form solution:

$$\mathbf{w} = (\mathbf{K}^{\mathsf{T}}\mathbf{K} + \frac{1}{C} \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix})^{-1} \phi^{\mathsf{T}} \mathbf{y}$$

where

•
$$\phi_i = \phi(x_i)$$

•
$$K_{ij} = \phi^{\top}(x_i)\phi(x_j) = K(x_i, x_j)$$

- LS-SVM gives us a closed-form expression for w. But this "speed" is only possible for linear kernels (which have ϕ computed anyway). No implicit computation of K for a higher dimensional ϕ is possible
- We will make a similar observation for SVM for classification, where a linear time algorithm can be formulated for linear SVM

For a given K, how to show that ϕ exists, without constructing a ϕ ?

- Mercer kernel
- Positive-definite kernel
- The *Mercer kernel* and *Positive-definite kernel* turn out to be equivalent definitions of kernel if the input space $\{x\}$ is *compact* (every Cauchy sequence is convergent).

Mercer's theorem

- Mercer kernel: $K(x_1, x_2)$ is a Mercer kernel if $\int \int K(x_1, x_2) g(x_1) g(x_2) dx_1 dx_2 \ge 0$ for all square integrable functions g(x) (that is, $\int (g(x))^2 dx$ is finite)
- Mercer's theorem:

An implication of the theorem is that for any *Mercer kernel* $K(x_1,x_2)$, $\exists \phi(x) : \mathbb{R}^n \mapsto H$, s.t. $K(x_1,x_2) = \phi^\top(x_1)\phi(x_2)$

where H is a *Hilbert space*, which is an inner product space with associated norms, where every Cauchy sequence is convergent

Do you know Hilbert? No? Then what are you doing in his space? :)

Prove that $(x_1^{\top}x_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \ge 1)$

- We want to prove that $\int_{x_1} \int_{x_2} (x_1^\top x_2)^d g(x_1) g(x_2) dx_1 dx_2 \ge 0,$ for all square integrable functions g(x)
- Here, x_1 and x_2 are vectors
- Thus, $\int_{x_1} \int_{x_2} (x_1^\top x_2)^d g(x_1) g(x_2) dx_1 dx_2$

$$= \int_{x_{11}} ... \int_{x_{1t}} \int_{x_{21}} ... \int_{x_{2t}} \left[\sum_{n_1...n_t} \frac{d!}{n_1!...n_t!} \prod_{j=1}^t (x_{1j}x_{2j})^{n_j} \right] g(x_1)g(x_2) dx_{11}...dx_{1t}dx_{21}...dx_{2t}$$
s.t. $\sum_i n_i = d$
(taking a leap)

Prove that $(\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ is a Mercer kernel $(\mathbf{d} \in \mathbb{Z}^+, \mathbf{d} \geq 1)$

$$= \sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \int_{x_1} \int_{x_2} \prod_{j=1}^t (x_{1j} x_{2j})^{n_j} g(x_1) g(x_2) dx_1 dx_2$$

$$=\sum_{n_1,\dots n_t}\frac{d!}{n_1!\dots n_t!}\int_{x_1}\int_{x_2}(x_{11}^{n_1}x_{12}^{n_2}\dots x_{1t}^{n_t})g(x_1)\left(x_{21}^{n_1}x_{22}^{n_2}\dots x_{2t}^{n_t}\right)g(x_2)dx_1dx_2$$

$$=\sum_{n_1,\dots,n_t}\frac{d!}{n_1!\dots n_t!}\left(\int_{x_1}(x_{11}^{n_1}\dots x_{1t}^{n_t})g(x_1)\ dx_1\right)\left(\int_{x_2}(x_{21}^{n_1}\dots x_{2t}^{n_t})g(x_2)\ dx_2\right)$$

(integral of decomposable product as product of integrals)

s.t.
$$\sum_i n_i = d$$

Prove that $(x_1^{\top}x_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \ge 1)$

- Realize that both the integrals are basically the same, with different variable names
- Thus, the equation becomes:

$$\sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \left(\int_{x_1} (x_{11}^{n_1} \dots x_{1t}^{n_t}) g(x_1) \, dx_1 \right)^2 \ge 0$$

(the square is non-negative for reals)

• Thus, we have shown that $(x_1^{\top} x_2)^d$ is a Mercer kernel.

What about $\sum_{d=1}^{r} \alpha_d(\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ s.t. $\alpha_d \geq 0$?

- $K(x_1, x_2) = \sum_{d=1}^{r} \alpha_d(x_1^{\top} x_2)^d$
- Is $\int_{x_1} \int_{x_2} (\sum_{d=1}^r \alpha_d(x_1^\top x_2)^d) g(x_1) g(x_2) dx_1 dx_2 \ge 0$?
- We have

$$\int_{x_1} \int_{x_2} \left(\sum_{d=1}^r \alpha_d (x_1^\top x_2)^d \right) g(x_1) g(x_2) \ dx_1 dx_2$$

$$= \sum_{d=1}^{r} \alpha_{d} \int_{x_{1}} \int_{x_{2}} (x_{1}^{\mathsf{T}} x_{2})^{d} g(x_{1}) g(x_{2}) dx_{1} dx_{2}$$

What about $\sum_{d=1}^{r} \alpha_d(\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ s.t. $\alpha_d \geq 0$?

- We have already proved that $\int_{x_1} \int_{x_2} (x_1^\top x_2)^d g(x_1) g(x_2) \ dx_1 dx_2 \geq 0$
- Also, $\alpha_d \geq 0$, $\forall d$
- Thus,

$$\sum_{d=1}^{r} \alpha_{d} \int_{x_{1}} \int_{x_{2}} (x_{1}^{\top} x_{2})^{d} g(x_{1}) g(x_{2}) dx_{1} dx_{2} \ge 0$$

• By which, $K(x_1, x_2) = \sum_{d=1}^r \alpha_d(x_1^\top x_2)^d$ is a Mercer kernel.

February 9, 2016 24 / 26

Kernels in SVR

Note that the dual:

$$\begin{split} \max_{\alpha_i,\alpha_i^*} &- \tfrac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(x_i) \phi(x_j) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) \\ \text{and the decision function:} \\ f(x) &= \sum_i (\alpha_i - \alpha_i^*) \phi^\top(x_i) \phi(x) + b \\ \text{are all in terms of the dot product } \phi^\top(x_i) \phi(x_j) \text{ only} \end{split}$$

• Therefore, one could employ kernels in SVR to implicitly perform linear regression in higher dimensional spaces

26 / 26