Lecture 11: Support Vector Regression, Dual and Kernel Trick

Instructor: Prof. Ganesh Ramakrishnan

Formulation for Support Vector Regression

- $\min_{w,b,\xi_i,\xi_i^*} \frac{1}{2} ||w||^2 + C \sum_i (\xi_i + \xi_i^*)$ s.t. $\forall i$, $y_i - w^{\top} \phi(x_i) - b \le \epsilon + \xi_i$, $b + w^{\top} \phi(x_i) - y_i \le \epsilon + \xi_i^*$, $\xi_i, \xi_i^* > 0$
- Let's consider the lagrange multipliers α_i , α_i^* , μ_i and μ_i^* corresponding to the above-mentioned constraints respectively.
- Aside: Consider Support Vector Regression Applet at https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

KKT conditions

- Differentiating the Lagrangian w.r.t. w, $w \alpha_i \phi(x_i) + \alpha_i^* \phi(x_i) = 0$ i.e. $w = \sum_{i=1}^n (\alpha_i - \alpha_i^*) \phi(x_i)$
- Differentiating the Lagrangian w.r.t. ξ_i , $C \alpha_i \mu_i = 0$ i.e. $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t ξ_i^* , $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b, $\sum_{i}(\alpha_{i}^{*}-\alpha_{i})=0$
- Complimentary slackness:

$$\alpha_i (\mathbf{y}_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - \mathbf{b} - \epsilon - \xi_i) = 0$$

$$\mu_i \xi_i = 0$$

$$\alpha_i^* (\mathbf{b} + \mathbf{w}^\top \phi(\mathbf{x}_i) - \mathbf{y}_i - \epsilon - \xi_i^*) = 0$$

$$\mu_i^* \xi_i^* = 0$$

Conclusions from the KKT conditions:

$$\alpha_i(y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - \mathbf{b} - \epsilon - \xi_i) = 0$$

and

$$\alpha_i^*(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - \mathbf{y}_i - \epsilon - \xi_i^*) = 0$$

 \Rightarrow ?

Conclusions from the KKT conditions:

$$\alpha_i \in (0, C) \Rightarrow ?$$

$$(C - \alpha_i)\xi_i = 0 \Rightarrow ?$$

$$\alpha_i^* \in (0, C) \Rightarrow ?$$

$$(C - \alpha_i^*)\xi_i^* = 0 \Rightarrow ?$$

For Support Vector Regression, since the original objective and the constraints are convex, any $(\mathbf{w}, \mathbf{b}, \alpha, \alpha^*, \mu, \mu^*, \xi, \xi^*)$ that satisfy the necessary KKT conditions gives optimality (conditions are also sufficient)

Some observations

- $\alpha_i, \alpha_i^* \geq 0$, $\mu_i, \mu_i^* \geq 0$, $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$ Thus, $\alpha_i, \mu_i, \alpha_i^*, \mu_i^* \in [0, C]$, $\forall i$
- If $0 < \alpha_i < C$, then $0 < \mu_i < C$ (as $\alpha_i + \mu_i = C$)
- $\mu_i \xi_i = 0$ and $\alpha_i (y_i w^{\top} \phi(x_i) b \epsilon \xi_i) = 0$ are complementary slackness conditions So $0 < \alpha_i < C \Rightarrow \xi_i = 0$ and $y_i - w^{\top} \phi(x_i) - b = \epsilon + \xi_i = \epsilon$
 - lacktriangle All such points lie on the boundary of the ϵ band
 - ▶ Using any point x_j (that is with $\alpha_j \in (0, C)$) on margin, we can recover b as:

$$b = y_j - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_j) - \epsilon$$

Support Vector Regression **Dual Objective**

Dual function

- $\bullet \ \, \mathsf{Let} \,\, L^*(\alpha,\alpha^*,\mu,\mu^*) = \mathsf{min}_{\mathsf{w},\mathsf{b},\xi,\xi^*} \, L(\mathsf{w},\mathsf{b},\xi,\xi^*,\alpha,\alpha^*,\mu,\mu^*)$
- By weak duality theorem, we have: $\min_{w,b,\xi,\xi^*} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*) \ge L^*(\alpha,\alpha^*,\mu,\mu^*)$ s.t. $y_i w^\top \phi(x_i) b \le \epsilon \xi_i$, and $w^\top \phi(x_i) + b y_i \le \epsilon \xi_i^*$, and $\xi_i,\xi^* \ge 0$, $\forall i=1,\ldots,n$
- The above is true for any $\alpha_i, \alpha_i^* \geq 0$ and $\mu_i, \mu_i^* \geq 0$
- Thus,

$$\min_{\mathbf{w}, \mathbf{b}, \xi, \xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{n} (\xi_i + \xi_i^*) \ge \max_{\alpha, \alpha^*, \mu, \mu^*} L^*(\alpha, \alpha^*, \mu, \mu^*)$$

s.t.
$$y_i - w^{\top} \phi(x_i) - b \le \epsilon - \xi_i$$
, and $w^{\top} \phi(x_i) + b - y_i \le \epsilon - \xi_i^*$, and $\xi_i, \xi^* \ge 0$, $\forall i = 1, \dots, n$

Dual objective

 In case of Support Vector Regression, we have a strictly convex objective and linear constraints

KKT conditions are necessary and sufficient and strong duality holds:

$$\min_{\mathbf{w}, \mathbf{b}, \xi, \xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*) = \max_{\alpha, \alpha^*, \mu, \mu^*} L^*(\alpha, \alpha^*, \mu, \mu^*)$$

s.t.
$$y_i - w^{\top} \phi(x_i) - b \leq \epsilon - \xi_i$$
, and $w^{\top} \phi(x_i) + b - y_i \leq \epsilon - \xi_i^*$, and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \dots, n$

- This value is precisely obtained at the $(\mathbf{w}, \mathbf{b}, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$ that satisfies the necessary (and sufficient) optimality conditions
- Given strong duality, we can equivalently solve

$$\max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$

• $L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*) + \sum_{i=1}^n (\alpha_i (\mathbf{y}_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - \mathbf{b} - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + \mathbf{b} - \mathbf{y}_i - \epsilon - \xi_i^*))$ $\sum_{i=1}^n (\mu_i \xi_i + \mu_i^* \xi_i^*)$

• We obtain w, b, ξ_i , ξ_i^* in terms of α , α^* , μ and μ^* by using the KKT conditions derived earlier as $w = \sum_{i=1}^n (\alpha_i - \alpha_i^*) \phi(x_i)$ and

$$\sum_{i=1}^{n} (\alpha_i - \alpha_i^*) = 0 \text{ and } \alpha_i + \mu_i = C \text{ and } \alpha_i^* + \mu_i^* = C$$

Thus, we get:

Thus, we get:

$$L(w, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$$

$$= \frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(x_i) \phi(x_j) +$$

$$\sum_{i} \left(\xi_i (C - \alpha_i - \mu_i) + \xi_i^* (C - \alpha_i^* - \mu_i^*) \right) - b \sum_{i} (\alpha_i - \alpha_i^*) -$$

$$\epsilon \sum_{i} (\alpha_i + \alpha_i^*) + \sum_{i} y_i (\alpha_i - \alpha_i^*) - \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(x_i) \phi(x_j)$$

$$= -\frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(x_i) \phi(x_j) - \epsilon \sum_{i} (\alpha_i + \alpha_i^*) +$$

$$\sum_{i} y_i (\alpha_i - \alpha_i^*)$$

Kernel function: $K(x_i, x_i) = \phi^{I}(x_i)\phi(x_i)$

- $w = \sum_{i=1}^{n} (\alpha_i \alpha_i^*) \phi(x_i) \Rightarrow$ the final decision function $f(x) = w^T \phi(x) + b =$ $\sum_{i=1}^{n} (\alpha_i - \alpha_i^*) \phi^T(x_i) \phi(x) + y_i - \sum_{i=1}^{n} (\alpha_i - \alpha_i^*) \phi^T(x_i) \phi(x_i) - \epsilon$ x_i is any point with $\alpha_i \in (0, C)$
- The dual optimization problem to compute the α 's for SVR is:

$$\max_{\alpha_{i},\alpha_{i}^{*}} -\frac{1}{2} \sum_{i} \sum_{j} (\alpha_{i} - \alpha_{i}^{*})(\alpha_{j} - \alpha_{j}^{*}) \phi^{\top}(\mathbf{x}_{i}) \phi(\mathbf{x}_{j})$$
$$-\epsilon \sum_{i} (\alpha_{i} + \alpha_{i}^{*}) + \sum_{i} y_{i}(\alpha_{i} - \alpha_{i}^{*})$$

s.t.

- $\boldsymbol{\triangleright} \ \alpha_i, \alpha_i^* \in [0, C]$
- We notice that the only way these three expressions involve ϕ is through $\phi^{\top}(x_i)\phi(x_i) = K(x_i, x_i)$, for some i, j