Lecture 11: Support Vector Regression, Dual and
Kernel Trick

Instructor: Prof. Ganesh Ramakrishnan
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Formulation for Support Vector Regression

. 2 *
o minype.e lwll”+ CY(&+ &)
s.t. Vi,
yvi—w o(x) —b< e+,
b+wlo(x) —y < e+ &,
§i7 51* Z 0
@ Let's consider the lagrange multipliers o, o, p; and p}
corresponding to the above-mentioned constraints respectively.
@ Aside: Consider Support Vector Regression Applet at
https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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KKT conditions

o Differentiating the Lagrangian w.r.t. w,
w — aid(x;) + ajp(x;) = 0
e w=321 (ai— af)d(x)

o Differentiating the Lagrangian w.r.t. &,
C—ai—pi=0
ie. aj+pi=C

o Differentiating the Lagrangian w.r.t £,
af +uf=C

o Differentiating the Lagrangian w.r.t b,
>laf —ai) =0

o Complimentary slackness:
ai(yi — Tﬁb(xi) —b—e—-¢&)=0

wi&i =0
af(b+wlo(x) —yi—e—&) =0
pi&i =0
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Conclusions from the KKT conditions:

aily; — WT¢(Xi) —b—€e—¢&)=0
and
af(b+w'o(x) —yi—e—&) =0

=7



Conclusions from the KKT conditions:

o € (O, C) =7
(C— Oé,')f,‘ =0=7
ar € (0,C) =7

(C—a)g =0=7

) Q (



For Support Vector Regression, since the original objective and the
constraints are convex, any (w, b, a, o, u, p*, &, £*) that satisfy the
necessary KKT conditions gives optimality (conditions are also

sufficient)
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Some observations

o aj,af >0, iy >0, aj+p;=Cand af +uf =C
Thus, a;, pi, af, ui €10, (], Vi

e lIf0<a;<Cthen0O< < C
(as i+ pi=C)

o u&=0and aj(y;— —w'p(x) —b—e—§&) =0 are
complementary slackness conditions
So0<ai<C=¢=0andy,—w o(x) —b=c+&=c¢

» All such points lie on the boundary of the € band

» Using any point x; (that is with o;; € (0, C)) on margin, we can
recover b as:

b=yj—wlo(x) —e

L e r—



Support Vector Regression
Dual Objective



Dual function

o Let [*(a, a*, pi, p1*) = miny peer L(w, b, &, &, v, 0, i, p1*)
@ By weak duality theorem, we have:
minwbeer 3Iwll” + CXL (& + &) > Lo, 07, p, 1)
st.y;i—w' o(x) —b<e—&, and
who(x) +b—y < e—&F, and
£, >0,Vi=1,...,n
@ The above is true for any a;, af > 0 and p;, 1 >0
@ Thus,

m|n—W + C i+&) > max LY(a,af
min_Slw]* Zf &)= max L(a,a’pp)

st yi—w'o(x) — b<e—§, and

who(x) +b—y < e—&F, and

€& >0 Vi=1,.. .n
e T ——



Dual objective

@ In case of Support Vector Regression, we have a strictly convex
objective and linear constraints = KKT conditions are necessary
and sufficient and strong duality holds:

N FITEES . o o 1
min S {lwl” + C;(&-Jré,-) = max L(a,a’ i)
st yi—w'o(x) —b<e—§, and
wlo(x) + b—y <e—&F, and
£,6°>0,Vi=1,...,n
@ This value is precisely obtained at the (w, b, &, &, a, a*, p, 1)
that satisfies the necessary (and sufficient) optimality conditions
@ Given strong duality, we can equivalently solve

max L*(c, o, p, p*)
oo,
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° L(a a y Ky ): 2||W|| + CZ,, (§I+€*)

n

> (cilyi —w'o(x) — b—e— &)+ af(w (x) + b—y; — e — &),

2 (i + i &])
o We obtain w, b, &;, & in terms of a, a*, v and p* by using the
KKT conditions derived earlier as w = ) (a; — af)¢(x;) and

i=1
n

d(avi—af)=0and o;+p;=Cand of + uf = C
@ Thus, we get:
L(w, b, &% o, a, i, 1¥)
=3 2ol —af)(a;— af)oT (x)e(x;) +
S (E(C—ai—p) +&(C—af —p;)) —b> (ai—af) —
e (aital)+>2 yiloi—af)— Z > (aima)(aj=a))d T (x)o(x;)
= —5 >0 lai—af) (e — )" (x)d(x) — GZ (a, af) +
Z,‘yi(ai_ O‘T)
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Kernel function: K(x;, x;) = ¢'(x;)o(x))
o w=> 7 (a;—af)p(x;) = the final decision function
flx) = wig(x) + b=
Yo (ai—an)eT(x)o(x) +y; — 2oL, (i — af )T (xi)d(x)) — €
x; is any point with a; € (0, C)
@ The dual optimization problem to compute the a's for SVR is:

MaXa,ar — % Z Z(Oz,- —af)(aj— Oéf)¢T (xi)o(xj)
—€ Z(a,— +ai) + Z}’i<ai —aj)

s.t.
» Sai—af) =0
» aj,af €10,(
o We notice that the only way these three expressions
involve ¢ is through ¢" (x;)¢(x;) = K(x;, x;), for some i, j
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