Lecture 12: Support Vector Regression, Kernel Trick and Optimization Algorithm Instructor: Prof. Ganesh Ramakrishnan

Some observations

- $\alpha_i, \alpha_i^* \geq 0$, $\mu_i, \mu_i^* \geq 0$, $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$ Thus, $\alpha_i, \mu_i, \alpha_i^*, \mu_i^* \in [0, C]$, $\forall i$
- If $0 < \alpha_i < C$, then $0 < \mu_i < C$ (as $\alpha_i + \mu_i = C$)
- $\mu_i \xi_i = 0$ and $\alpha_i (y_i w^{\top} \phi(x_i) b \epsilon \xi_i) = 0$ are complementary slackness conditions So $0 < \alpha_i < C \Rightarrow \xi_i = 0$ and $y_i - w^{\top} \phi(x_i) - b = \epsilon + \xi_i = \epsilon$
 - lacktriangle All such points lie on the boundary of the ϵ band
 - ▶ Using any point x_j (that is with $\alpha_j \in (0, C)$) on margin, we can recover b as:

$$b = y_j - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_j) - \epsilon$$

Support Vector Regression Dual Objective

Dual function

- $\bullet \ \, \mathsf{Let} \,\, L^*(\alpha,\alpha^*,\mu,\mu^*) = \mathsf{min}_{\mathsf{w},\mathsf{b},\xi,\xi^*} \, L(\mathsf{w},\mathsf{b},\xi,\xi^*,\alpha,\alpha^*,\mu,\mu^*)$
- By weak duality theorem, we have: $\min_{w,b,\xi,\xi^*} \tfrac{1}{2} \|w\|^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*) \ge L^*(\alpha,\alpha^*,\mu,\mu^*)$ s.t. $y_i w^\top \phi(x_i) b \le \epsilon \xi_i$, and $w^\top \phi(x_i) + b y_i \le \epsilon \xi_i^*$, and $\xi_i,\xi^* \ge 0$, $\forall i=1,\ldots,n$
- The above is true for any $\alpha_i, \alpha_i^* \geq 0$ and $\mu_i, \mu_i^* \geq 0$
- Thus,

$$\min_{\mathbf{w}, \mathbf{b}, \xi, \xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{n} (\xi_i + \xi_i^*) \ge \max_{\alpha, \alpha^*, \mu, \mu^*} L^*(\alpha, \alpha^*, \mu, \mu^*)$$

s.t.
$$y_i - w^{\top} \phi(x_i) - b \leq \epsilon - \xi_i$$
, and $w^{\top} \phi(x_i) + b - y_i \leq \epsilon - \xi_i^*$, and $\xi_i, \xi^* \geq 0, \ \forall i = 1, \dots, n$

<ロ > ← □ > ← □ > ← □ > ← □ = − の へ ⊙

Dual objective

 In case of Support Vector Regression, we have a strictly convex objective and linear constraints

KKT conditions are necessary and sufficient and strong duality holds:

$$\min_{\mathbf{w}, \mathbf{b}, \xi, \xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*) = \max_{\alpha, \alpha^*, \mu, \mu^*} L^*(\alpha, \alpha^*, \mu, \mu^*)$$

s.t.
$$y_i - w^{\top} \phi(x_i) - b \leq \epsilon - \xi_i$$
, and $w^{\top} \phi(x_i) + b - y_i \leq \epsilon - \xi_i^*$, and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \dots, n$

- This value is precisely obtained at the $(\mathbf{w}, \mathbf{b}, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$ that satisfies the necessary (and sufficient) optimality conditions
- Given strong duality, we can equivalently solve

$$\max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$

February 16, 2016 5 / 22

• $L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*) + \sum_{i=1}^n (\alpha_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - \mathbf{b} - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + \mathbf{b} - \mathbf{y}_i - \epsilon - \xi_i^*))$ $\sum_{i=1}^n (\mu_i \xi_i + \mu_i^* \xi_i^*)$

• We obtain w, b, ξ_i , ξ_i^* in terms of α , α^* , μ and μ^* by using the KKT conditions derived earlier as $w = \sum_{i=1}^{n} (\alpha_i - \alpha_i^*) \phi(x_i)$ and

$$\sum_{i=1}^{n} (\alpha_i - \alpha_i^*) = 0 \text{ and } \alpha_i + \mu_i = C \text{ and } \alpha_i^* + \mu_i^* = C$$

Thus, we get:

Has, we get:

$$L(w, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$$

$$= \frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(x_i) \phi(x_j) +$$

$$\sum_{i} \left(\xi_i (C - \alpha_i - \mu_i) + \xi_i^* (C - \alpha_i^* - \mu_i^*) \right) - b \sum_{i} (\alpha_i - \alpha_i^*) -$$

$$\epsilon \sum_{i} (\alpha_i + \alpha_i^*) + \sum_{i} y_i (\alpha_i - \alpha_i^*) - \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(x_i) \phi(x_j)$$

$$= -\frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(x_i) \phi(x_j) - \epsilon \sum_{i} (\alpha_i + \alpha_i^*) +$$

$$\sum_{i} y_i (\alpha_i - \alpha_i^*)$$

F-1----- 16 2016 6 / 22

Kernel function: $K(x_i, x_j) = \phi^T(x_i)\phi(x_j)$

- $w = \sum_{i=1}^{n} (\alpha_i \alpha_i^*) \phi(x_i) \Rightarrow$ the final decision function $f(x) = w^T \phi(x) + b = \sum_{i=1}^{n} (\alpha_i \alpha_i^*) \phi^T(x_i) \phi(x) + y_j \sum_{i=1}^{n} (\alpha_i \alpha_i^*) \phi^T(x_i) \phi(x_j) \epsilon$ x_j is any point with $\alpha_j \in (0, C)$
- The dual optimization problem to compute the α 's for SVR is:

$$\max_{\alpha_i, \alpha_i^*} -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j)$$
$$-\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i \mathbf{y}_i (\alpha_i - \alpha_i^*)$$

s.t.

- $\sum_{i} (\alpha_i \alpha_i^*) = 0$
- $\alpha_i, \alpha_i^* \in [0, C]$
- We notice that the only way these three expressions involve ϕ is through $\phi^{\top}(x_i)\phi(x_j)=K(x_i,x_j)$, for some i,j

Kernelized form for SVR

• The *kernelized* dual optimization problem to compute the α 's for SVR is:

$$\max_{\alpha_i, \alpha_i^*} -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(x_i, x_j)$$
$$-\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$

s.t.

- $\qquad \qquad \alpha_i, \alpha_i^* \in [0, C]$

The Kernel function in SVR

- Again, invoking the **kernel function**: $K(x_1, x_2) = \phi^{\top}(x_1)\phi(x_2)$
- The decision function becomes:

$$f(x) = \sum_{i} (\alpha_{i} - \alpha_{i}^{*}) K(x_{i}, x) + b$$

• Using any point x_j (that is with $\alpha_j \in (0, C)$) on margin, we can recover b as:

$$b = y_j - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_j) - \epsilon = y_j - \sum_i (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}_j)$$

- Thus, the optimization problem as well as the final decision function are only in terms of the kernel function K(x, x').
- We will see that, often, computing $K(x_1, x_2)$ does not even require computing $\phi(x_1)$ or $\phi(x_2)$ explicitly

How about Ridge Regression?

• Recall for Ridge Regression: $w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$, where,

$$\Phi = \begin{bmatrix} \phi_1(\mathbf{x}_1) & \dots & \phi_p(\mathbf{x}_1) \\ \dots & \dots & \dots \\ \phi_1(\mathbf{x}_m) & \dots & \phi_p(\mathbf{x}_m) \end{bmatrix}$$

and

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \dots \\ y_m \end{bmatrix}$$

•
$$(\Phi^T \Phi)_{ij} = \sum_{k=1}^m \phi_i(x_k) \phi_j(x_k)$$
 whereas $(\Phi \Phi^T)_{ij} = \sum_{k=1}^p \phi_k(x_i) \phi_k(x_j) = K(x_i, x_j)$

Please note the difference between Φ and $\phi(x)$

٥

$$\Phi = \begin{bmatrix} \phi_1(\mathbf{x}_1) & \dots & \phi_p(\mathbf{x}_1) \\ \dots & \dots & \dots \\ \phi_1(\mathbf{x}_m) & \dots & \phi_p(\mathbf{x}_m) \end{bmatrix}$$

and

$$\phi(x_j) = \begin{bmatrix} \phi_1(x_j) \\ \dots \\ \phi_p(x_j) \end{bmatrix}$$

- $\bullet \ \phi^{T}(x_{i})\phi(x_{i}) = K(x_{i}, x_{i})$
- $\bullet \ (\Phi^T \Phi)_{ii} = \sum_{k=1}^m \phi_i(x_k) \phi_j(x_k)$
- $(\Phi\Phi^T)_{ii} = \sum_{k=1}^p \phi_k(x_i)\phi_k(x_j) = \phi^T(x_i)\phi(x_j) = K(x_i, x_j)$

Kernelizing Ridge Regression

- Given $w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$ and using the identity $(P^{-1} + B^T R^{-1} B)^{-1} B^T R^{-1} = PB^T (BPB^T + R)^{-1}$
 - ▶ ⇒
 - ightharpoonup

How about Ridge Regression?

- Given $w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$ and using the identity $(P^{-1} + B^T R^{-1} B)^{-1} B^T R^{-1} = PB^T (BPB^T + R)^{-1}$
 - $\Rightarrow w = \Phi^{T} (\Phi \Phi^{T} + \lambda I)^{-1} y = \sum_{i=1}^{m} \alpha_{i} \phi(x_{i}) \text{ where}$ $\alpha_{i} = \left((\Phi \Phi^{T} + \lambda I)^{-1} y \right)_{i}$
 - ▶ ⇒ the final decision function $f(x) = \phi^T(x)w = \sum_{i=1}^m \alpha_i \phi^T(x)\phi(x_i)$
- Again, We notice that the only way the decision function f(x) involves ϕ is through $\phi^{\top}(x_i)\phi(x_j)$, for some i,j

The Kernel function in Ridge Regression

- We call $\phi^{\top}(x_1)\phi(x_2)$ a **kernel function**: $K(x_1, x_2) = \phi^{\top}(x_1)\phi(x_2)$
- The preceding expression for decision function becomes $f(x) = \sum_{i=1}^{m} \alpha_i K(x, x_i)$ where $\alpha_i = (([K(x_i, x_j)] + \lambda I)^{-1}y)_i$

Back to the Kernelized version of SVR

• The kernelized dual problem:

$$\begin{aligned} \max_{\alpha_i,\alpha_i^*} &- \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \textit{K}(\textit{x}_i,\textit{x}_j) \\ &- \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i \textit{y}_i (\alpha_i - \alpha_i^*) \end{aligned}$$

s.t.

$$\quad \boldsymbol{\alpha_i, \alpha_i^* \in [0, C]}$$

• The kernelized decision function:

$$f(x) = \sum_{i} (\alpha_{i} - \alpha_{i}^{*}) K(x_{i}, x) + b$$

• Using any point x_j with $\alpha_j \in (0, C)$: $b = y_i - \sum_i (\alpha_i - \alpha_i^*) K(x_i, x_i)$

• Computing $K(x_1, x_2)$ often does not even require computing $\phi(x_1)$ or $\phi(x_2)$ explicitly

An example

• Let
$$K(x_1, x_2) = (1 + x_1^{\top} x_2)^2$$

- What $\phi(\mathbf{x})$ will give $\phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2) = \mathit{K}(\mathbf{x}_1,\mathbf{x}_2) = (1+\mathbf{x}_1^{\top}\mathbf{x}_2)^2$
- Is such a ϕ guaranteed to exist?
- Is there a unique ϕ for given K?

- ullet We can prove that such a ϕ exists
- For example, for a 2-dimensional x_i :

$$\phi(x_i) = \begin{bmatrix} 1 \\ x_{i1}\sqrt{2} \\ x_{i2}\sqrt{2} \\ x_{i1}x_{i2}\sqrt{2} \\ x_{i1}^2 \\ x_{i2}^2 \end{bmatrix}$$

- $\phi(x_i)$ exists in a 5-dimensional space
- Thus, to compute $K(x_1, x_2)$, all we need is $x_1^{\top} x_2$, and there is no need to compute $\phi(x_i)$

Introduction to the Kernel Trick (more later)

- Kernels operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the Kernel function
- This approach is called the "kernel trick" and will talk about valid kernels a little later...
- This operation is often computationally cheaper than the explicit computation of the coordinates

Solving the SVR Dual Optimization Problem

• The SVR dual objective is: $\max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) K(x_i, x_j)$ $-\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$

- This is a linearly constrained quadratic program (LCQP), just like the constrained version of Lasso
- There exists no closed form solution to this formulation
- Standard QP (LCQP) solvers¹ can be used
- Question: Are there more specific and efficient algorithms for solving SVR in this form?

Solving the SVR Dual Optimization Problem

• It can be shown that the objective:

$$\begin{array}{l} \max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \textit{K}(\textit{x}_i,\textit{x}_j) \\ -\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i \textit{y}_i (\alpha_i - \alpha_i^*) \end{array}$$

• can be written as:

$$\max_{\beta_i} - \frac{1}{2} \sum_i \sum_j \beta_i \beta_j K(x_i, x_j) - \epsilon \sum_i \lvert \beta_i \rvert + \sum_i y_i \beta_i$$
 s.t.

- $\sum_{i} \beta_{i} = 0$
- ▶ $\beta_i \in [-C, C]$, $\forall i$
- Even for this form, standard QP (LCQP) solvers² can be used
- Question: How about (iteratively) solving for two β_i 's at a time?
 - ► This is the idea of the Sequential Minimal Optimization (SMO) algorithm

Sequential Minimal Optimization (SMO) for SVR

Consider:

$$\max_{\beta_i} - \frac{1}{2} \sum_i \sum_j \beta_i \beta_j K(x_i, x_j) - \epsilon \sum_i \lvert \beta_i \rvert + \sum_i y_i \beta_i$$
 s.t.

- $\sum_{i} \beta_{i} = 0$
- $\beta_i \in [-C, C], \forall i$
- The SMO subroutine can be defined as:
 - **1** Initialise β_1, \ldots, β_n to some value $\in [-C, C]$
 - ② Pick β_i , β_j to estimate closed form expression for next iterate (i.e. β_i^{new} , β_i^{new})
 - Oheck if the KKT conditions are satisfied
 - * If not, choose β_i and β_j that worst violate the KKT conditions and reiterate

