Lecture 12: Support Vector Regression, Kernel
Trick and Optimization Algorithm

Instructor: Prof. Ganesh Ramakrishnan
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Some observations

o aj,af >0, iy >0, aj+p;=Cand af +uf =C
Thus, a;, pi, af, ui €10, (], Vi

e lIf0<a;<Cthen0O< < C
(as i+ pi=C)

o u&=0and ai(y;—w'o(x) —b—ec—&) =0 are
complementary slackness conditions
So0<ai<C=¢=0andy,—w o(x) —b=c+&=c¢

» All such points lie on the boundary of the € band

» Using any point x; (that is with o;; € (0, C)) on margin, we can
recover b as:

b=yj—wlo(x) —e
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Support Vector Regression
Dual Objective



Dual function

o Let [*(a, a*, pi, p1*) = miny peer L(w, b, &, &, v, 0, i, p1*)
@ By weak duality theorem, we have:
minwbeer 3Iwll” + CXL (& + &) > Lo, 07, p, 1)
st.y;i—w' o(x) —b<e—&, and
who(x) +b—y < e—&F, and
£, >0,Vi=1,...,n
@ The above is true for any a;, af > 0 and p;, 1 >0
@ Thus,

m|n—W + C i+&) > max LY(a,af
min_Slw]* Zf &)= max L(a,a’pp)

st yi—w'o(x) — b<e—§, and

who(x) +b—y < e—&F, and

€& >0 Vi=1,.. .n
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Dual objective

@ In case of Support Vector Regression, we have a strictly convex
objective and linear constraints = KKT conditions are necessary
and sufficient and strong duality holds:

N FITEES . o o 1
min S {lwl” + C;(&-Jré,-) = max L(a,a’ i)
st yi—w'o(x) —b<e—§, and
wlo(x) + b—y <e—&F, and
£,6°>0,Vi=1,...,n
@ This value is precisely obtained at the (w, b, &, &, a, a*, p, 1)
that satisfies the necessary (and sufficient) optimality conditions
@ Given strong duality, we can equivalently solve

max L*(c, o, p, p*)
oo,
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° L(a a y Ky ): 2||W|| + CZ,, (§I+€*)

n

> (cilyi —w'o(x) — b—e— &)+ af(w (x) + b—y; — e — &),

2 (i + i &])
o We obtain w, b, &;, & in terms of a, a*, v and p* by using the
KKT conditions derived earlier as w = ) (a; — af)¢(x;) and

i=1
n

d(avi—af)=0and o;+p;=Cand of + uf = C
@ Thus, we get:
L(w, b, &% o, a, i, 1¥)
=3 2ol —af)(a;— af)oT (x)e(x;) +
S (E(C—ai—p) +&(C—af —p;)) —b> (ai—af) —
e (aital)+>2 yiloi—af)— Z > (aima)(aj=a))d T (x)o(x;)
= —5 >0 lai—af) (e — )" (x)d(x) — GZ (a, af) +
Z,‘yi(ai_ O‘T)
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Kernel function: K(x;, x;) = ¢'(x;)o(x))
o w=> 7 (a;—af)p(x;) = the final decision function
flx) = wig(x) + b=
Yo (ai—an)eT(x)o(x) +y; — 2oL, (i — af )T (xi)d(x)) — €
x; is any point with a; € (0, C)
@ The dual optimization problem to compute the a's for SVR is:

MaXa,ar — % Z Z(Oz,- —af)(aj— Oéf)¢T (xi)o(xj)
—€ Z(a,— +ai) + Z}’i<ai —aj)

s.t.
» Sai—af) =0
» aj,af €10,(
o We notice that the only way these three expressions
involve ¢ is through ¢" (x;)¢(x;) = K(x;, x;), for some i, j
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Kernelized form for SVR

@ The kernelized dual optimization problem to compute the a's for
SVR is:

1 * *
MaXq, o — 3 E E (o —af) (o — aj)K(x,-, ;)
i

—€ Z(a; +a7) + Zyi(Oéi —a;)

i
s.t

- Yiai—af) =0
» aj,af €0,

L February 16,2016 8 / 22



The Kernel function in SVR

@ Again, invoking the kernel function:
K(x1, x) = ¢T(X1)¢(X2)

@ The decision function becomes:
fix) = 2o — af)K(xi, x) + b

e Using any point x; (that is with ; € (0, C)) on margin, we can
recover b as:
b=y;—wio(x) —e=y;— 3 (e = a})K(x;, x))

@ Thus, the optimization problem as well as the final decision
function are only in terms of the kernel function K(x, x).

@ We will see that, often, computing K(xi, x») does not even
require computing ¢(x;) or ¢(x2) explicitly
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How about Ridge Regression?
@ Recall for Ridge Regression: w= (®7® + \/)~1®Ty, where,

d1(x) o Pp(x)
b =
O1(Xm) o Pp(Xm)

g

o (@7®). =37, dilxi)oj(xc) whereas
(@27). = >0, du(xi)ul(x) = K(xi, X))

)

and
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Please note the difference between ® and ¢(x)

¢1(X1) ¢p(X1)
o =
$1(xm) o Dp(Xm)

and

o (x)p(x) = K(x;, x,>
(@7®), = Soh, dilxe) (%)
(PT), = by dr(x)x(x5) = &7 (X)) (%) = K(; %)
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Kernelizing Ridge Regression

e Given w= (®7® + \)~'® Ty and using the identity
(P~! + BTR-'B)~'BTR"! — PBT(BPBT + R)-!
- =
- =
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How about Ridge Regression?

e Given w= (®7® + \/)~1®Ty and using the identity
(P'+B"R'B)"'B"R"! = PBT(BPBT + R)™!
» = w=0T(@dT + M) ly =" «a;d(x;) where
ap = <(<I><I>T+ )\/)_ly> '
» = the final decision function
fix) = ¢T(x)w =21 i (x)¢(x)
e Again, We notice that the only way the decision function
f(x) involves ¢ is through ¢ (x;)¢(x;), for some i, j
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The Kernel function in Ridge Regression

o We call " (x1)¢(x2) a kernel function:
Kixi, %) = ¢ (x1)¢(x)
@ The preceding expression for decision function becomes

fx) = 22 aiKix x)
where o = (([K(xi, x;)] + A)~ty),
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Back to the Kernelized version of SVR

@ The kernelized dual problem:
1 * *
MaXasa; ~ 5 > (= a}) (o — o) )K(x; )
|

—€ Z(a,— +af)+ Zy;(ai —aj)

s.t.
- Tai—af) =0
» aj,af €10,(
@ The kernelized decision function:
1) = 3o — o} K(x. %) + b
@ Using any point x; with «; € (0, C):
b= y;— 3 ,(i— a))K(x. )
e Computing K(xi, x2) often does not even require computing
o(x1) or d(xz) explicitly
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An example

o Let K(x1, %) = (1 + x{ x0)?
o What ¢(x) will give ¢ (x1)p(x2) = K(x1, %) = (1 + x{ x2)?
@ Is such a ¢ guaranteed to exist?

@ Is there a unique ¢ for given K?
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@ We can prove that such a ¢ exists

@ For example, for a 2-dimensional x;:

1
Xi1 \/5
. Xi2 \/§
d)(XI) B Xi1X1‘2\/§
X

X3

[)

@ ¢(x;) exists in a 5-dimensional space
@ Thus, to compute K(x, x2), all we need is xlTxg, and there is no
need to compute ¢(x;)
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Introduction to the Kernel Trick (more later)

o Kernels operate in a high-dimensional, implicit feature space
without ever computing the coordinates of the data in that
space, but rather by simply computing the Kernel function

@ This approach is called the "kernel trick” and will talk about
valid kernels a little later...

@ This operation is often computationally cheaper than the explicit
computation of the coordinates
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Solving the SVR Dual Optimization Problem

@ The SVR dual objective is:
maXy,ar — % ZiZj(ai —a7)(aj— O‘j)K(Xiv Xj)
—ed (it af) + 30yl — af)

@ This is a linearly constrained quadratic program (LCQP), just
like the constrained version of Lasso

@ There exists no closed form solution to this formulation

e Standard QP (LCQP) solvers® can be used

@ Question: Are there more specific and efficient algorithms for
solving SVR in this form?

'https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_

and_scripting_.28programming.29_languages
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Solving the SVR Dual Optimization Problem

@ It can be shown that the objective:
MaXa,ar — 5 2 2, — af)(aj — af ) K(x;, x;)
—ed {ai+af) + > yilai — af)
@ can be written as:
maxg; — %ZiZjﬁfﬁjK(Xi’ xj) — €y i|Bil + > viBi
s.t.
> > iBi=0
» Bie[-C (), Vi
@ Even for this form, standard QP (LCQP) solvers® can be used
@ Question: How about (iteratively) solving for two ;s at a time?

» This is the idea of the Sequential Minimal Optimization (SMO)
algorithm

’https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_

and_scripting_.28programming.29_languages
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Sequential Minimal Optimization (SMO) for SVR

o Consider:
maxg, — 5 3, > BiBiK(xi, ;) — € 32181 + 2 il
s.t.
> 2iBi=0
» Bie[-C(, Vi

@ The SMO subroutine can be defined as:
Q Initialise 31, ..., 3, to some value € [—C, (]
@ Pick 3i, B; to estimate closed form expression for next iterate
(i.e. l@[pewy IBJpew)
© Check if the KKT conditions are satisfied
* If not, choose f3; and f3; that worst violate the KKT conditions
and reiterate
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