Lecture 13: More on Kernels, PSD kernels,
Mercer Kernels, etc
Instructor: Prof. Ganesh Ramakrishnan
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Recall the Kernelized version of SVR

@ The kernelized dual problem:
1 * *
MaXasa; = 5 > (= a}) (o — o) )K(x; %)
|

—€ Z(a,— +af)+ Zy;(oéi —aj)

s.t.
- Tai—af) =0
» aj,af €10,(
@ The kernelized decision function:
1) = 3o — o} K(x. %) + b
e Using any point x; with a; € (0, C):
b= y;— 3 ,(i— a))K(x. )
e Computing K(xi, x2) often does not even require computing
o(x1) or p(xq) explicitly
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An example Kernel

( paere)
<
e Let K(x,x) = (1 +XIX2)2/? 0& Y

e What ¢(x) will give ¢' (x1)p(x2) = K(x1, %) = (1 + x{ x)?
@ Is such a ¢ guaranteed to exist? ~e3

@ Is there a unique ¢ for given K? =7 7
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@ We can prove that such a ¢ exists

@ For example, for a 2-dimensional x;:

1
Xi1\/§
N\ XIQ\/i
d)(XI) B Xi1Xr2\/§
X
Xh

@ ¢(x;) exists in a 5-dimensional space

@ Thus, to compute K(x, x2), all we need is xlTxg, and there is no
need to compute ¢(x;)

K(ot.,x;)-,(l-& x'fxa_)‘* --whot s a }6 1
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Introduction to the Kernel Trick

e Kernels operate in a high-dimensional, implicit feature space
without ever computing the coordinates of the data in that
space, but rather by simply computing the Kernel function

@ This approach is called the "kernel trick” and will talk about
valid kernels CE ):'{'erﬁLj 'nzceSSo.:J Lbnd\hoh o§ sd %’5"’
¢ss\an2
@ This operation is often computationally cheaper t ant i% explici
computation of the coordinates (DCD 4)[&\])

e Claim: If L = K(x;, x;) = (qﬁ(x,—),gb(xj)> are entrles ofannxn

Gram Matrix IC then
K S a symmeée

» K must be positive semi-definite *
malvrs
> Proof: bTCb =) " biKCybj =Y  bibi{p(xi), p(x;)) e
C’V beR™ %: Z gnc

= (" bib(x), Y bie(x) —|IZ¢ NEEY: 45(179!’(;1)
- %
Snce ZZbWEL ('4_) ibﬂ ) ¢ (Tl)¢
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Basis function expansion and the Kernel trick

@ We started off with the functional form?!

P d &
0= S won~ P ekt
=1

a-ﬂ'\Y'\ eF mmswﬂ

Each ¢; is called a basis function and this representation is called
basis function expansion® e S '\n_ ?m
sorne Grrniingrs S5 eq“,',,“'e“t/,wi“ o
ex\st erce o{f ﬁ & f(x) = ZaiK(X X;) cou\d ‘e
& othess doit  caxe — houg e é
bas)s h C'Jt-)

for Ridge regression and Support Vector Regressmn
e For p € [0,00), with what K, kind of regularizers, loss functions,

_etc. will these dual representations hold??

1The additional b term can be either absorbed in ¢ or kept separate as
discussed on several occasions.

2Section 2.8.3 of Tibshi

3Section 5.8.1 of Tibshi.
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Existence of basis expansion ¢ for symmetric K7
@ Positive-definite kernel: For any dataset, the Gram matrix XC
must be positive definite
) K(x1,x1) K(x1, x»)
K(x;, x;)
s PS b %
‘P K ‘.N?\ut o‘cuﬂﬂ K(xn, x1) K(xn, Xn)
erge nis il

so that K= USUT = (UX7)(US2)T = RRT where rows of U
are linearly independent and X is a positive diagonal matrix
@ Mercer kernel: Extending to eigenfunction decomposition?:

K(x,x) = Z ajpi(x1)¢j(x2) where o > 0 and 3 3%, aF < oo

n c¢ho j=1 £uncheon
%ercerq(eme/ and Pos:t/ve-defmlte kernel turn out to be
equivalent if the input space {x} is compact®

4Eigen-decomposition wrt linear operators. See

https://en.wikipedia.org/wiki/Mercer’27s_theorem
5

That is, if every Cauchy sequence is convergent.
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For @) do show that K(x,z):(wfz)"

15 lo. Nahd keme] You must

Show that ¥ (z‘-.xn)x. ¥ n
A - (1272 Ofﬂfrxz)"‘- - lexTerA

~
~ (1-{-9(1‘-1,1')4
~

~

5 hsd Nt ahoays pracheat |




Like sayin \ sd voabyx ‘:F:)r’
Mercer's theorem ¥ |\a\(< ao“l}ffat ) o ,],,o\ kevnel

e Mercer kernel: K(xi,x;) is a Mercer kernel if
[ [ K(x1,x2)g(x1)g(x2) dxidxz > 0 for all square integrable
functions g(x)
(g(x) is square integrable iff [(g(x))* dx is finite)

e Mercer’s theorem: ,‘-vw_\' H oS
An implication of the theorem: - now
for any Mercer kernel K(x1, x2), 3¢(x) : R" — H (Q

st. K(xi, %) = ¢ (x1)o(x)
» where His a Hilbert spaceﬁ, the infinite dimensional version of
the Eucledian space.
» Eucledian space: (R",<.,.>) where < .,. > is the standard dot
product in 1"
» Formally, Hibert Space is an inner product space with
associated norms, where every Cauchy sequence is convergent

Do you know Hilbert? No? Then what are you doing in-his space?- :)
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Prove that (x| x;)¢ is a Mercer kernel (d € Z™,
d>1)

o We want to prove that

[ . (X x2)%g(x1)g(x2) dxidxz > 0,
x1 Jxo
for all square mtegrable functions g(x)

e Here, x; and x, are vectors, % , Xy € R
@ Thus, f><1 fXQ(XlTXQ)dg(Xl)g(XQ) dxy dxy

e [

t

d Ht _
n ' n | (XUXQJ')”/ g(Xl)g(XQ) Xml..dXMngl..dXQt
1eellge 7
J=1

ni..ng \
¢ k \(\\‘v
o
s.t. ; nj=d sww )«\ k’;\p
(taking a leap) ¥ % "{“’)\ b~"‘° s,_,n(‘
G‘b
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Prove that (x| x;)¢ is a Mercer kernel (d € Z™,
d>1)

- Z m!. /X 1 / H x1j%2j)™ g(x1)g(x2) dxi dxs

ni...ng X2 =1

Zn.s-d Vo .o\f? endence
_ / /X glx) (Wxﬂxz
n1 e 1l =o\ Snd
- % (f ot gt ) (] (.. gtoe) )

(integral of decomposable product as product of integrals)
t

s.t. Zn,- =d
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Prove that (x| x;)¢ is a Mercer kernel (d € Z™,
d>1)

@ Realize that both the integrals are basically the same, with
different variable names

@ Thus, the equation becomes:

d
) D </Xl (... XS)g(x) dba)? > 0

ni...nt

(the square is non-negative for reals)

d

@ Thus, we have shown that (x] x,)¢ is a Mercer kernel.

S\mﬂadb: [l{ 1171‘;7d 18 a Mexcev kevnet
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r
What about Z ag(x] x0)9 s.t. g > 07
d—

(] X1,X2 E (o7 Xl X2

els// (Zadxle ) (x1)g(xz) dxydxy > 07
X1 v X2

e We have
/ / (Z ad<xIx2>d) £(x)g(x) ds b
X1YX2\ d=1

—Zad// x| x2)9g(x1)g(x2) dxy dx;
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r
What about Z ag(x] x0)9 s.t. g > 07
d—1

@ We have already proved that [ [ (x/x)%(x1)g(x2) dxidx; > 0
@ Also, ag > 0, Vd

@ Thus,
Zad/ / x| Xx2)%g(x1)g(x2) dxydxy > 0

@ By which, K(x,x) = Z ag(x] x5)% is a Mercer kernel.
d=1
@ Examples of Mercer Kernels: Linear Kernel, Polynomial Kernel,
Radial Basis Function Kernel
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Kernels in SVR

@ Recall:
maxa,ar — 5 220 — af) (o — af ) K(xi, ;) — € 3o (i + af) +
> ivilai—ajf)
and the decision function:
fx) = 2 iai — af)K(x;, x) + b
are all in terms of the kernel K(x;, x;) only

@ One can now employ any mercer kernel in SVR or Ridge
Regression to implicitly perform linear regression in higher
dimensional spaces
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target

Support Vector Regression

-3

— RBF model
—— Linear model

— Polynomial model
eee data

-1



Basis function expansion & Kernel: Part 1

We saw the that for p € [0, 00), under certain conditions on K, the
following can be equivalent representations

fix) = Z wjd;(x)
e And .
fx) = Z aiK(x, x;)

e For what kind of regularizers, loss functions and p € [0, co) will
these dual representations hold?’

"Section 5.8.1 of Tibshi.
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Basis function expansion & Kernel: Part 2

@ We could also begin with

fx) = Z aiK(x, x;)

and impose no constraints on K.

o Eg.: Ki(xq,x) = I(|[xq — X|| < |[X) — Xo||) where x is the
training observation ranked k™ in distance from x and /(S) is the

indicator of the set S ' K (g %)= [ ¥ s wihin k
. . K( 1".) lfi? Nneavest, Nbrs °S'
@ This is precisely the Nearest Neighbor Regression model — ~_

o Kernel regression and density models are other examples of such
local regression methods®

8Section 2.8.2 of Tibshi
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