Lecture 13: More on Kernels, PSD kernels, Mercer Kernels, etc

Instructor: Prof. Ganesh Ramakrishnan

Recall the Kernelized version of SVR

• The kernelized dual problem:

$$\begin{aligned} \max_{\alpha_i, \alpha_i^*} &- \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \textit{K}(\textit{x}_i, \textit{x}_j) \\ &- \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i \textit{y}_i (\alpha_i - \alpha_i^*) \end{aligned}$$

s.t.

$$\quad \boldsymbol{\alpha_i, \alpha_i^* \in [0, C]}$$

• The kernelized decision function:

$$f(x) = \sum_{i} (\alpha_{i} - \alpha_{i}^{*}) K(x_{i}, x) + b$$

• Using any point x_j with $\alpha_j \in (0, C)$: $b = y_i - \sum_i (\alpha_i - \alpha_i^*) K(x_i, x_i)$

• Computing $K(x_1, x_2)$ often does not even require computing $\phi(x_1)$ or $\phi(x_2)$ explicitly

An example Kernel

• Let
$$K(x_1,x_2)=(1+x_1^{\top}x_2)^2$$
 of degree • What $\phi(x)$ will give $\phi^{\top}(x_1)\phi(x_2)=K(x_1,x_2)=(1+x_1^{\top}x_2)^2$ • Is such a ϕ guaranteed to exist?

- What $\phi(x)$ will give $\phi^{\top}(x_1)\phi(x_2) = K(x_1,x_2) = (1+x_1^{\top}x_2)^2$
- Is such a ϕ guaranteed to exist? $\rightarrow \forall \epsilon$
- Is there a unique ϕ for given $K? \rightarrow 7$

- ullet We can prove that such a ϕ exists
- For example, for a 2-dimensional x_i :

$$\phi(x_i) = \begin{bmatrix} 1 \\ x_{i1}\sqrt{2} \\ x_{i2}\sqrt{2} \\ x_{i1}x_{i2}\sqrt{2} \\ x_{i1}^2 \\ x_{i2}^2 \end{bmatrix}$$

- $\phi(x_i)$ exists in a 5-dimensional space
- Thus, to compute $K(x_1, x_2)$, all we need is $x_1^\top x_2$, and there is no need to compute $\phi(x_i)$

$$(1+\alpha_1^n x_2)^d = (1+\alpha_{11}^n x_{21} + \alpha_{12}^n x_{22})^d$$

$$= \sum_{n_1,n_2,n_3} (c_n^n c_n^n c_n$$

Introduction to the Kernel Trick

- **Kernels** operate in a *high-dimensional*, *implicit* feature space without ever computing the coordinates of the data in that space, but rather by simply computing the Kernel function
- This approach is called the "kernel trick" and will talk about valid kernels (Extending necessary condition of psd from This operation is often computationally cheaper than the explicit
- This operation is often computationally cheaper than the explicit computation of the coordinates
- Claim: If $\mathcal{K}_{ij} = \mathcal{K}(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ are entries of an $n \times n$ Gram Matrix \mathcal{K} then
 - \mathcal{K} must be positive semi-definite : \mathcal{K} is a symmetric matrix \mathcal{K} Proof: $\mathbf{b}^{\mathsf{T}}\mathcal{K}\mathbf{b} = \sum_{i,j} b_i \mathcal{K}_{ij} b_j = \sum_{i,j} b_i b_j \langle \phi(x_i), \phi(x_j) \rangle$ Since

$$= \langle \sum_{i} b_{i} \phi(x_{i}), \sum_{j} b_{j} \phi(x_{j}) \rangle = || \sum_{i} b_{j} \phi(x_{i}) ||_{2}^{2} \geq 0 \qquad \phi^{\dagger}(x_{1}) \phi(x_{1})$$
Since $\sum_{i} \sum_{j} b_{i} b_{j} \phi^{\dagger}(x_{1}) \phi(x_{1}) = (\sum_{i} b_{i} \phi(x_{i}))^{\dagger} (\sum_{j} b_{j} \phi(x_{j})) = (\sum_{i} b_{i} \phi(x_{i}))^{\dagger} (\sum_{j} b_{j} \phi(x_{j})) = (\sum_{j} b_{i} \phi(x_{j}))^{\dagger} (\sum_{j} b_{j} \phi(x_{j})) = (\sum_{j} b_{j} \phi(x_{j}))^{\dagger} (\sum_{j} b_{j} \phi(x_{j})) = (\sum$

Basis function expansion and the Kernel trick

We started off with the functional form¹

$$f(\mathbf{x}) = \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$
 ϕ could be infinite complex ϕ infinite dimension

Each ϕ_i is called a *basis function* and this representation is called basis function expansion²

basis function expansion²
• And we landed up with an equivalent some formulations show existence of
$$p = f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$
 could be thought of as for Ridge regression and Support Vector Regression

• For $p \in [0, \infty)$, with what K, kind of regularizers, loss functions, etc., will these dual representations hold?³

7 / 18

¹The additional b term can be either absorbed in ϕ or kept separate as discussed on several occasions.

²Section 2.8.3 of Tibshi

³Section 5.8.1 of Tibshi.

 $= \sum_{i} \omega_{j} \phi_{j}(x)$ $= \sum_{i} \alpha_{i} K(x_{i} \times i) \left(= \sum_{i} \alpha_{i} h_{i}(x_{i}) \right)$ DLHS leads to RHS for loss functions 4
regularizers such as Ridge regression 4 Q: Does LHS lead to RMS for Lasso? 2 " Valid" K could mean existence of \$\phi\$

5-t K(\frac{1}{2}, \frac{1}{2}) = \langle b(\frac{1}{2};), \phi(\frac{1}{2};)\rangle: Psd kernel fins 3 Some models directly begin with RHS form without bothering abt existence of powers to have regression Non-parametric regression

Existence of basis expansion ϕ for symmetric K?

• Positive-definite kernel: For any dataset, the Gram matrix Kmust be positive definite

If
$$K$$
 is pso $K = \begin{bmatrix} K(x_1, x_1) & \dots & K(x_1, x_n) \\ \dots & K(x_i, x_j) & \dots \\ K(x_n, x_1) & \dots & K(x_n, x_n) \end{bmatrix}$ so that $K = U\Sigma U^T = (U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T = RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix

Mercer kernel: Extending to eigenfunction decomposition⁴:

$$K(x_1,x_2) = \sum_{j=1}^{\infty} \alpha_j \phi_j(x_1) \phi_j(x_2)$$
 where $\alpha_j \geq 0$ and $\sum_{j=1}^{\infty} \alpha_j^2 < \infty$ where $\alpha_j \geq 0$ and $\alpha_j \geq 0$ and

⁵That is, if every Cauchy sequence is convergent. < •

equivalent if the input space $\{x\}$ is compact⁵

Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s theorem

$$\mathcal{K} = U Z U^{T} = (U Z^{2}) (U Z^{2})^{T}$$

$$= RR^{T} = \begin{bmatrix} Y_{1}Y_{1} & Y_{1}Y_{2} & \cdots & Y_{1}Y_{n} \\ Y_{2}^{T}Y_{1} & \cdots & Y_{n}^{T}Y_{n} \end{bmatrix}$$
Think of $Y_{i} = \phi(x_{i})$

$$\Rightarrow K_{ij} = \phi^{T}(x_{i})\phi(x_{j}) \text{ or } \langle \phi(x_{i}), \phi(x_{j}) \rangle$$

$$\therefore \text{ If matrix } K \text{ is psd, there exists } \phi \text{ for } f_{0}(x_{i}) = f_{0}(x_{i}) + f_{0}(x$$

.. If matrix K is psd, there exists ϕ for each point in the matrix st K ij = $\langle \phi(x_i), \phi(x_j) \rangle$.

But this procedure requires that for a given kernel for K(x,x') for all $(x_i,...x_n)$ 4 for all x_i , the gram matrix K must be psd for x_i to exist

For eg: to show that
$$K(x,z)=(1+x^Tz)^d$$

13 a valid kernel, you must:

Show that $\forall (x,...x_n) \neq \forall n$

$$K = \left(1+x_1^Tx_1\right)^d \left(1+x_1^Tx_2\right)^d - ... \left(1+x_1^Tx_n\right)^d\right)$$

15 $\Rightarrow x = 1$

15 $\Rightarrow x = 1$

Not always practical!

Mercer's theorem & llall < 0, 10 Ka >0, ie psd kernel

- Mercer kernel: $K(x_1, x_2)$ is a Mercer kernel if $\int \int K(x_1, x_2)g(x_1)g(x_2) dx_1 dx_2 \ge 0$ for all square integrable functions g(x) $(g(x) \text{ is square integrable } iff \int (g(x))^2 dx \text{ is finite})$
- Mercer's theorem:

for any Mercer kernel $K(x_1,x_2)$, $\exists\,\phi(x):\mathbb{R}^n\mapsto H$, f for now s.t. $K(x_1,x_2)=\phi^\top(x_1)\phi(x_2)$

- \triangleright where H is a Hilbert space⁶, the infinite dimensional version of the Eucledian space.
- Eucledian space: $(\Re^n, <...>)$ where <...> is the standard dot product in \Re^n
- Formally, Hibert Space is an inner product space with associated norms, where every Cauchy sequence is convergent

⁶Do you know Hilbert? No? Then what are you doing in his space?:) 200

Prove that $(x_1^{\top}x_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+,$ $d \geq 1$

- We want to prove that $\int_{x_1} \int_{x_2} (x_1^\top x_2)^d g(x_1) g(x_2) dx_1 dx_2 \ge 0,$ for all square integrable functions g(x)
- Here, x_1 and x_2 are vectors, $x_1, x_2 \in \mathbb{R}^t$
- Thus, $\int_{x_1} \int_{x_2} (x_1^\top x_2)^d g(x_1) g(x_2) dx_1 dx_2$

$$= \int_{x_{11}} ... \int_{x_{1t}} \int_{x_{21}} ... \int_{x_{2t}} \left[\sum_{n_1..n_t} \frac{d!}{n_1!..n_t!} \prod_{j=1}^t (x_{1j}x_{2j})^{n_j} \right] g(x_1)g(x_2) dx_{11}...dx_{1t}dx_{21}...dx_{2t}$$

s.t.
$$\sum_{i=1}^{t} n_i = d$$
 (taking a leap)

s.t. $\sum_{i=1}^{t} n_i = d$ snow that (taking a leap)

Prove that $(x_1^{\top}x_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \ge 1)$

$$= \sum_{\substack{n_1...n_t \\ \sum n_i = d}} \frac{d!}{n_1! \dots n_t!} \int_{x_1} \int_{x_2} \prod_{j=1}^t (x_{1j}x_{2j})^{n_j} g(x_1) g(x_2) dx_1 dx_2$$

$$= \sum_{\substack{n_1...n_t \\ n_1! \dots n_t!}} \frac{d!}{n_1! \dots n_t!} \int_{x_1} \int_{x_2} \underbrace{(x_{11}^{n_1} x_{12}^{n_2} \dots x_{1t}^{n_t}) g(x_1) (x_{21}^{n_1} x_{22}^{n_2} \dots x_{2t}^{n_t}) g(x_2) dx_1 dx_2}_{\sum n_i = d}$$

$$= \sum_{\substack{n_1...n_t \\ n_1! \dots n_t!}} \frac{d!}{(x_{11}^{n_1} \dots x_{1t}^{n_t}) g(x_1) dx_1} (\int_{x_2} (x_{21}^{n_1} \dots x_{2t}^{n_t}) g(x_2) dx_2)$$

(integral of decomposable product as product of integrals)

s.t.
$$\sum_{i=1}^{t} n_i = d$$

<ロ> <回> <回> < 速> < 速> < 速 > のQで

11 / 18

Prove that $(x_1^{\top}x_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \geq 1)$

- Realize that both the integrals are basically the same, with different variable names
- Thus, the equation becomes:

$$\sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \left(\int_{x_1} (x_{11}^{n_1} \dots x_{1t}^{n_t}) g(x_1) dx_1 \right)^2 \ge 0$$

(the square is non-negative for reals)

• Thus, we have shown that $(x_1^T x_2)^d$ is a Mercer kernel.

What about $\sum \alpha_d(\mathbf{x}_1^{\mathsf{T}}\mathbf{x}_2)^d$ s.t. $\alpha_d \geq 0$?

•
$$K(x_1, x_2) = \sum_{i=1}^{r} \alpha_d(x_1^{\top} x_2)^d$$

• Is
$$\int_{x_1} \int_{x_2} \left(\sum_{d=1}^r \alpha_d(x_1^\top x_2)^d \right) g(x_1) g(x_2) dx_1 dx_2 \ge 0$$
?

We have

$$\int_{x_1} \int_{x_2} \left(\sum_{d=1}^r \alpha_d (x_1^\top x_2)^d \right) g(x_1) g(x_2) dx_1 dx_2$$

$$= \sum_{d=1}^r \alpha_d \int_{x_2} \int_{x_2} (x_1^\top x_2)^d g(x_1) g(x_2) dx_1 dx_2$$

February 19, 2016 13 / 18

What about
$$\sum_{d=1}^{r} \alpha_d (\mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2)^d$$
 s.t. $\alpha_d \geq 0$?

- We have already proved that $\int_{x_1} \int_{x_2} (x_1^\top x_2)^d g(x_1) g(x_2) dx_1 dx_2 \ge 0$
- Also, $\alpha_d \geq 0$, $\forall d$
- Thus,

$$\sum_{d=1}^{r} \alpha_{d} \int_{x_{1}} \int_{x_{2}} (x_{1}^{\top} x_{2})^{d} g(x_{1}) g(x_{2}) dx_{1} dx_{2} \ge 0$$

- By which, $K(x_1, x_2) = \sum_{d=1}^r \alpha_d(x_1^\top x_2)^d$ is a Mercer kernel.
- Examples of Mercer Kernels: Linear Kernel, Polynomial Kernel, Radial Basis Function Kernel

Kernels in SVR

Recall:

$$\begin{aligned} & \max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \textit{K}(\textit{x}_i,\textit{x}_j) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \\ & \sum_i \textit{y}_i (\alpha_i - \alpha_i^*) \\ & \text{and the decision function:} \\ & \textit{f}(\textit{x}) = \sum_i (\alpha_i - \alpha_i^*) \textit{K}(\textit{x}_i,\textit{x}) + b \end{aligned}$$

are all in terms of the kernel $K(x_i, x_j)$ only

 One can now employ any mercer kernel in SVR or Ridge Regression to implicitly perform linear regression in higher dimensional spaces

Basis function expansion & Kernel: Part 1

We saw the that for $p \in [0, \infty)$, under certain conditions on K, the following can be equivalent representations

•

$$f(\mathbf{x}) = \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$

And

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

• For what kind of regularizers, loss functions and $p \in [0, \infty)$ will these dual representations hold?⁷

⁷Section 5.8.1 of Tibshi.

Basis function expansion & Kernel: Part 2

• We could also begin with

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

and impose no constraints on K.

- E.g.: $K_k(x_q, x) = I(||x_q x|| \le ||x_{(k)} x_0||)$ where $x_{(k)}$ is the training observation ranked k^{th} in distance from x and I(S) is the indicator of the set $S: K_k(x_q, x) = I$ if x_q is within k reasest. Thus
- This is precisely the Nearest Neighbor Regression model
- Kernel regression and density models are other examples of such local regression methods⁸

⁸Section 2.8.2 of Tibshi