Lecture 13: More on Kernels, PSD kernels,
Mercer Kernels, etc
Instructor: Prof. Ganesh Ramakrishnan
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Recall the Kernelized version of SVR

@ The kernelized dual problem:
1 * *
MaXasa; ~ 5 > (= a}) (o — o) )K(x; )
|

—€ Z(a,— +af)+ Zy;(ai —aj)

s.t.
- Tai—af) =0
» aj,af €10,(
@ The kernelized decision function:
1) = 3o — o} K(x. %) + b
@ Using any point x; with «; € (0, C):
b= y;— 3 ,(i— a))K(x. )
e Computing K(xi, x2) often does not even require computing
o(x1) or d(xz) explicitly
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An example Kernel

o Let K(x1, %) = (1 + x{ x0)?
o What ¢(x) will give ¢ (x1)p(x2) = K(x1, %) = (1 + x{ x2)?
@ Is such a ¢ guaranteed to exist?

@ Is there a unique ¢ for given K?
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@ We can prove that such a ¢ exists

@ For example, for a 2-dimensional x;:

1
Xi1 \/5
. Xi2 \/§
d)(XI) B Xi1X1‘2\/§
X

X3

[)

@ ¢(x;) exists in a 5-dimensional space
@ Thus, to compute K(x, x2), all we need is xlTxg, and there is no
need to compute ¢(x;)
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Introduction to the Kernel Trick

e Kernels operate in a high-dimensional, implicit feature space
without ever computing the coordinates of the data in that
space, but rather by simply computing the Kernel function

@ This approach is called the "kernel trick” and will talk about
valid kernels

@ This operation is often computationally cheaper than the explicit
computation of the coordinates

o Claim: If ICj = K(x;, x;) = (¢(x;), #(x;)) are entries of an n x n
Gram Matrix K then
» /C must be positive semi-definite

» Proof: b"Kb = Z bilCijb; = Z bibj{#(xi), p(x;))
ij ij
= (3 biox). 3 o)) = 1|3 ol = 0
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Basis function expansion and the Kernel trick

@ We started off with the functional form?!
p
fix) = wy(x)
j=1

Each ¢; is called a basis function and this representation is called
basis function expansion®
@ And we landed up with an equivalent

flx) = Z a;K(x,x;)

for Ridge regression and Support Vector Regression
@ For p € [0,00), with what K, kind of regularizers, loss functions,
etc., will these dual representations hold?3
1The additional b term can be either absorbed in ¢ or kept separate as
discussed on several occasions.
2Section 2.8.3 of Tibshi
3Section 5.8.1 of Tibshi.
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Existence of basis expansion ¢ for symmetric K?

e Positive-definite kernel: For any dataset {x;, %2, ..., X,} and for
any n, the Gram matrix KC must be positive definite

K(x1,x1) K(x1, x»)
K= K(xi, x;)
K(xn, x1) K(Xn, Xn)
so that K = USUT = (U2)(UL2)T = RRT where rows of U
are linearly independent and ¥ is a positive diagonal matrix
@ Mercer kernel: Extending to eigenfunction decomposition*:

o
K(Xl,XQ) = Z aj¢j(x1)¢j(x2) where Qi >0 and Zj.il OéJ? < o0
j=1
@ Mercer kernel and Positive-definite kernel turn out to be
equivalent if the input space {x} is compact®
“*Eigen-decomposition wrt linear operators. See

https://en.wikipedia.org/wiki/Mercer’,27s_theorem
5

That is, if every Cauchy sequence is convergent.
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https://en.wikipedia.org/wiki/Mercer%27s_theorem

Mercer's theorem

e Mercer kernel: K(xi, x) is a Mercer kernel if
[ [ K(x1,x2)g(x1)g(x2) dxidxz > 0 for all square integrable
functions g(x)
(g(x) is square integrable iff [(g(x))* dx is finite)
e Mercer’s theorem:
An implication of the theorem:
for any Mercer kernel K(x1,x2), 3¢(x) : R" — H,
st Kixi,x) = ¢ (x1)¢(x)

» where His a Hilbert spaceﬁ, the infinite dimensional version of
the Eucledian space.

» Eucledian space: (R",<.,.>) where < .,. > is the standard dot
product in R"

» Formally, Hibert Space is an inner product space with
associated norms, where every Cauchy sequence is convergent

®Do you know Hilbert? No? Then what are you doing in-his space? :)
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Prove that (x| x;)¢ is a Mercer kernel (d € Z™,
d>1)

o We want to prove that

[ . (X x2)9g(x1)g(x2) dxidxz > 0,
x1 Jx2
for all square mtegrable functions g(x)

@ Here, x; and x, are vectors s.t xi,x, € R*
@ Thus, f><1 fXQ(XlTXQ)dg(Xl)g(XQ) dxy dxy

] [

d Ht _
n ' n 1 (XUXQJ')”/ g(Xl)g(XQ) Xml..dthXgl..dXQt
1eellge 7
J=1

ni..ng

s.t. Zn,—d

( taklng a leap)
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Prove that (x| x;)¢ is a Mercer kernel (d € Z™,
d>1)

= Z / H leXQJ (Xg) XmdXQ
nl X1

ni...ng X2 =1

- // Delxa) (GG .. x50 g(xe) dadke

n1 nt

:Zmiﬁﬂ@mmwmdwm@mwg

ni...ng x2

(integral of decomposable product as product of integrals)
t

s.t. Zn,- =d
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Prove that (x| x;)¢ is a Mercer kernel (d € Z™,
d>1)

@ Realize that both the integrals are basically the same, with
different variable names

@ Thus, the equation becomes:

d
2 m!...n! </Xl(xﬁ L xip)g(x) dx)? > 0

ni...nt

(the square is non-negative for reals)

d

@ Thus, we have shown that (x] x;)? is a Mercer kernel.
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r
What about Z ag(x] x0)9 s.t. g > 07
d—

()] X1,X2 E (o7 X1 X2

els// (Zadxle ) (x1)g(xz) dxydxy > 07
X1 v X2

e We have
/ / (Zad@xgd) £(x)(x) dxs b
XX\ d=1

—Zad// x| x2)9g(x1)g(x2) dxy dx;
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r
What about Z ag(x] x0)9 s.t. g > 07
d—1

@ We have already proved that [ [ (x/x:)%(x1)g(x2) dxidx; > 0
@ Also, ag > 0, Vd

@ Thus,
Zad/ / x| x3)%g(x1)g(x2) dxydxy > 0
X2

e By which, K(x,x) = Z ag(x] x5)% is a Mercer kernel.
d=1
@ Examples of Mercer Kernels: Linear Kernel, Polynomial Kernel,
Radial Basis Function Kernel
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Kernels in SVR

@ Recall:

Maxe,.a; = 5 25 20 — o) (g — af ) Kxi, x5) — € 30 (v + af) +

2yl — aj)
and the decision function:
fx) = 2 iai— af)K(x;, x) + b
are all in terms of the kernel K(x;, x;) only

@ One can now employ any mercer kernel in SVR or Ridge
Regression to implicitly perform linear regression in higher
dimensional spaces
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target

Support Vector Regression

3 .
— RBF model
— Linear model
25 . — Polynomial model |]
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Basis function expansion & Kernel: Part 1

We saw the that for p € [0, 00), under certain conditions on K, the
following can be equivalent representations

fx) = Z wjd;(x)
e And .
fx) = Z aiK(x, x;)

e For what kind of regularizers, loss functions and p € [0, co) will
these dual representations hold?’

"Section 5.8.1 of Tibshi.
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Basis function expansion & Kernel: Part 2

@ We could also begin with

fx) = Z aiK(x, x;)

and impose no constraints on K.

o Eg.: Ki(xq,x) = I(|[xq — X|| <X — Xo||) where x is the
training observation ranked k™ in distance from x and /(S) is the
indicator of the set S

@ This is precisely the Nearest Neighbor Regression model

o Kernel regression and density models are other examples of such
local regression methods®

8Section 2.8.2 of Tibshi
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