Basis function expansion & Kernel: Part 1

We saw the that for p € [0, 00), under certain conditions on K, the
following can be equivalent representations

o
p
fx) = Z wj;(x) .
e And a basis &”‘Ch‘mc‘l)
fix) = ; K)o )
= Lo\ N

e For what kind of regularizers, loss functions and p € [0, co) will
these dual representations hold?! ‘Defev Ams 1u¢s}-o-ﬂ
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Basis function expansion & Kernel: Part 2

@ We could also begin with

y be fx) = a;iK(x, x;)
K n(!é T\I‘A l“\t’(ce.{ 1221: (U S
RN = V. {s Seme vneasuve
and impose no constraints on K. oj’— Smia-ﬂs ('7-. 11)
o Eg.: Ki(xq,x) = I(|[xq — X|| < |[X) — Xo||) where x is the
training observation ranked k™ in distance from x and /(S) is the

indicator of the set S /,f‘c“ wih’ 7t &:Vf\m'\wn

@ This is precisely the Nearest Neighbor Regression r%‘g'c;el

o Kernel regression and density models are other examples of such
local regression methods? b
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Kernel weighted regression (Mdsem Bl Local  lineaxr

~Negxession
Weights obtained using some kernel K(.,.). Given a training set of

points D = {(xl,yl), e (X Vi), (x,,,y,,)}, we predict a
regression function f(xX) = (W' ¢(X) + b} for each test (or query
point) X' as follows:

(W', b’)—argmanK% ;) (y, (w T¢(Xi)+b))2

w,b

© If there is a closed form expression for (w’, b') and therefore for
f(X) in terms of the known quantities, derive it.

© How does this model compare with linear regression and
k—nearest neighbor regression? What are the relative
advantages and disadvantages of this model?

@ In the one dimensional case (that is when ¢(x) € R), graphically
try and mterpret what this regression model would look like, say

. kernel®.

Hint: What would the regression function look like-at each training data
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More on Kernels after some classification

(84 Aata set bewe we wwean dhe
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@ We will delve a bit more into kernel density estimation etc after

some treatment of classification e O(S ?q-;a_ms 0\0'('\% Srany!
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Perceptron
& Kame) ()(emce\o"wcﬂ
X dee‘g reuva) nehuorks



$a(x)
w' ¢(x) + b > 0 for +ve points (y= +1)
w' ¢(x) + b < 0 for -ve points (y=-1)
$:(0) w,¢ € R"

N dhey  wovds: 5({,)‘¢["’)T®>O “@

@ Assuming the problem is linearly separable, there is a learning
rule that converges in a finite time.

@ A new (unseen) input pattern that is similar to an old (seen)
input pattern is likely to be classified correctly
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o Often, b is indirectly captured by including it in w, and using a ¢

as: Qaug = (¢, 1]
@ Thus, w'¢(x)

$1
P2
3

:[Wl Wo W3 ... Wy b]

S

o\WTgb(x) = 0 is the separating hyperplane.
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Perceptron Intuition

(b, (409,30 - (P&

- - W -
@ Go over all the existing examples, whose class is known, and
check their classification with a current weight vector Cu)«’)

o If correct, continue

e If not, add to the weights a quantity that is proportional to the
product of the input pattern with the desired output y (1 or —1)

Exewcise 1 (M Wate doun Anis \yewc:‘;\-qon (U‘?do.\'p)
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Perceptron Update Rule

Q)
W40
/\ w(ﬂ ;YOO- - 1‘3
@ Start with some weight vector W), and for k=1,2,3,...,n

(for every example), do:
9 = WD) 4 To()
e where X s.t. X is misclassified by (wt9)T¢(x) \ Sors
ie. y(WR)TH(X) < 0 — s Skx wove Cormplet
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$=(%)
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@ Perceptron does not find the best seperating hyperplane, it finds
any seperating hyperplane.

@ In case the initial w does not classify all the examples, the
seperating hyperplane corresponding to the final w* will often
pass through an example.

@ The seperating hyperplane does not provide enough breathing
space — this is what SVMs address!

H|w: Go ’((r\*ouﬁﬂ 1"°"9 °§ mw‘smw\,,\,,l:.%l.

l?!.rcc?\'( onNn U

L March1,2016 18 /30



