Lecture 17: Training Neural Networks, Logistic Regression
 Instructor: Prof. Ganesh Ramakrishnan

Feed-forward Neural Nets

Eg: Feed-forward Neural Net for XOR

 inputs
Training a Neural Network

STEP 0: Pick a network architecture

- Number of input units: Dimension of features $\phi\left(x^{(i)}\right)$.
- Number of output units: Number of classes.
- Reasonable default: 1 hidden layer, or if >1 hidden layer, have same number of hidden units in every layer.
- Number of hidden units in each layer a constant factor (3 or 4) of dimension of x.
- We will use
- the smooth sigmoidal function $g(s)=\frac{1}{1+e^{-s}}$: How do we train a single node sigmoidal neural network?
- instead of the non-smooth step function $g(s)=1$ if $s \in[\theta, \infty)$ and $g(s)=0$ otherwise: Single node step function neural network is perceptron, which we know how to train.

Training for single node sigmoidal NN

(1) Neural Networks: Cascade of layers of sigmoidal perceptrons giving you smoothness and non-linearity
(2) Single node sigmoidal NN is also called (Binary) Logistic Regression, abbreviated as LR

- $\operatorname{sign}\left(\left(w^{*}\right)^{T} \phi(x)\right)$ replaced by $g\left(\left(w^{*}\right)^{T} \phi(x)\right)$ where $g(s)$ is sigmoid function: $g(s)=\frac{1}{1+e^{-s}}$
(3) $g\left(\left(w^{*}\right)^{T} \phi(x)\right)=\frac{1}{1+e^{-\left(w^{*}\right)^{T} \phi(x)}} \in[0,1]$ can be intepreted as $\operatorname{Pr}(y=1 \mid x)$
- Then $\operatorname{Pr}(y=0 \mid x)=$?

Probability theory review in context of LR

- Sample space(S): A sample space is defined as a set of all possible outcomes of an experiment. For LR:
$S=\{$ all possible examples x with class $y\} .|S|=\infty$
- Event (E) : An event is defined as any subset of the sample space. Total number of distinct events possible is $2^{|S|}$, where $|S|$ is the number of elements in the sample space.
- Random variable: A random variable is a mapping (or function) from set of events to a set of real numbers.
$\phi($.$) is a continuous random vector$

$$
\phi(.): 2^{S} \rightarrow \mathbb{R}^{p}
$$

Y is a discrete random (class) variable mapping events to a countable set $\{0,1\}$

$$
Y: 2^{S} \rightarrow\{0,1\}
$$

Axioms of Probability

- For every event $E, 0 \leq \operatorname{Pr}(E) \leq 1$
- $\operatorname{Pr}(S)=1$
- If $E_{1}, E_{2}, \ldots, E_{n}$ is a set of pairwise disjoint events, then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(E_{i}\right)
$$

Bayes' Theorem

Let $B_{1}, B_{2}, \ldots, B_{n}$ be a set of mutually exclusive events that together form the sample space S. Let A be any event from the same sample space, such that $P(A)>0$. Then,

$$
\begin{equation*}
\operatorname{Pr}\left(B_{i} / A\right)=\frac{\operatorname{Pr}\left(B_{i} \cap A\right)}{\operatorname{Pr}\left(B_{1} \cap A\right)+\operatorname{Pr}\left(B_{2} \cap A\right)+\cdots+\operatorname{Pr}\left(B_{n} \cap A\right)} \tag{1}
\end{equation*}
$$

Using the relation $P\left(B_{i} \cap A\right)=P\left(B_{i}\right) \cdot P\left(A / B_{i}\right)$

$$
\begin{equation*}
\operatorname{Pr}\left(B_{i} / A\right)=\frac{\operatorname{Pr}\left(B_{i}\right) \cdot \operatorname{Pr}\left(A / B_{i}\right)}{\sum_{j=1}^{n} \operatorname{Pr}\left(B_{j}\right) \cdot \operatorname{Pr}\left(A / B_{j}\right)} \tag{2}
\end{equation*}
$$

Distribution Functions

- Probability Mass Function (PMF): Probability that a discrete random variable (vector) is exactly equal to some value in the sample space

$$
p_{Y}(0)=\operatorname{Pr}(Y=0) \text { and } p_{Y}(1)=\operatorname{Pr}(Y=1)
$$

- Probability Density Function (PDF): Function that describes the relative likelihood for this random variable to occur at a given point in the sample space, that is $p\left(\phi_{j}()=v.\right)$. And if $D \subseteq \Re$,

$$
\operatorname{Pr}\left(\phi_{j}(.) \in D\right)=\int_{D} p(v) d v
$$

- Joint Density Function: In the case of continuous random vectors, if $p\left(\phi_{1}(),. \phi_{2}(),. \ldots, \phi_{p}().\right)$ is a joint pdf and if $D \subseteq \Re^{p}$,

$$
\operatorname{Pr}(\phi(.) \in D)=\iint \ldots \int_{\mathbf{v} \in D} p(\mathbf{v}) d \mathbf{v}
$$

Marginalization

- Marginal probability is the unconditional probability $P(A)$ of the event A; that is, the probability of A, regardless of whether event B did or did not occur.

Example:

$$
\begin{gathered}
p_{\phi_{i}(.)}(\widehat{v})= \\
\int_{v_{1}} . . \int_{v_{i-1}} \int_{v_{i+1}} . . \int_{v_{p}} p\left(v_{1}, . ., v_{i-1}, \widehat{v}, v_{i+1}, . ., v_{p}\right) d v_{1} . . d v_{i-1} d v_{i+1} . . d v_{p}
\end{gathered}
$$

Conditional Density

If $\phi($.$) and Y$ are two random variable then we can define the conditional probability density
(1) of Y given $\phi($.$) , denoted Y \phi($.$) , i.e., Discrete Case$ $p_{Y \phi(.)}(Y=y \mid \phi(x))$: Discriminative Probabilistic Classifier
E.g: Logistic Regression (single node sigmoid NN) directly models $p_{Y \phi(.)}(Y=1 \mid \phi(x))=\frac{1}{1+e^{-(w)^{T} \phi(x)}}$. Then $p_{Y \phi(.)}(Y=0 \mid \phi(x))=$?
OR
(2) of $\phi($.) given Y, denoted $\phi() \mid$.$Y , i.e., Continuous case$ $p_{\phi(.) \mid Y}(\mathrm{v} \mid y)$: Generative Probabilistic Classifier

Thus...

Joint Probability Distribution

- $p_{\phi(.), Y}(\mathbf{v}, Y=y)$ or simply written as $p(\mathbf{v}, y)$
- "Probability density at $\phi()=.\mathbf{v}$ and $Y=y$ "

Conditional Probability Distribution

- $p(Y=y \mid \phi(x)) \mathrm{VS}$. $p_{\phi(.) \mid Y}(\mathbf{v} \mid Y=y)$ (or simply $p(\mathbf{v} \mid y)$)
- "Probability of $Y=y$ given $\phi(x)$ " OR "Probability of $\phi()=.\mathbf{v}$ given $Y=y^{\prime \prime}$

Rules of Probability

- Sum Rule (marginalization/ summing out)

$$
p(\phi(x))=\sum_{y^{\prime}} p(y, \phi(x),)
$$

- Bayes Rule: Gives a way a way of reversing conditional probabilities

$$
p(\mathbf{v} \mid y)=\frac{p(y \mid \mathbf{v}) p(\mathbf{v})}{p(y)}=\frac{p(y, \mathbf{v}) p(\mathbf{v})}{\Sigma_{\mathbf{v}} p(y \mid \mathbf{v}) p(\mathbf{v})}
$$

Thus: Conditional pmf/pdf

If $\phi($.$) and Y$ are two random variables then we can define the conditional probability density
(1) of Y given $\phi($.$) , denoted Y \phi($.$) , i.e., Discrete Case$

- $p(y \mid \phi(x))$ is directly modeled and while you do not need to invoke Bayes rule, you only need to ensure the sum rule (pmfs sum to 1).
- Logistic Regression (single node sigmoid NN) directly models $p(Y=1 \mid \phi(x))=\frac{1}{1+e^{-(w)^{T} \phi(x)}}$ and $p(Y=0 \mid \phi(x))=\frac{e^{-(w)^{\top} \phi(x)}}{1+e^{-(w)^{\top} \phi(x)}}$
OR
(2) of $\phi($.$) given Y$, denoted $\phi() \mid$.$Y , i.e., Continuous case$

$$
p(\mathbf{v} \mid y)=\frac{p(y \mid \mathbf{v}) p(\mathbf{v})}{\int_{\mathbf{v}^{\prime}} p\left(y \mid \mathbf{v}^{\prime}\right) p\left(\mathbf{v}^{\prime}\right)}
$$

Training LR (Single node sigmoidal NN)

(1) Estimator is a function of the dataset
$\mathcal{D}=\left\{\left(\phi\left(x^{(1)}, y^{(1)}\right),\left(\phi\left(x^{(2)}, y^{(2)}\right), \ldots,\left(\phi\left(x^{(n)}, y^{(n)}\right)\right)\right\}\right.\right.$ which is
meant to approximate the parameter w.
(2) Maximum Likelihood Estimator: Estimator \widehat{w} that maximizes the likelihood $L(\mathcal{D} ; w)$ of the data \mathcal{D}.

- Assumes that all the instances $\left(\phi\left(x^{(1)}, y^{(1)}\right),\left(\phi\left(x^{(2)}, y^{(2)}\right), \ldots,\left(\phi\left(x^{(n)}, y^{(n)}\right)\right)\right.\right.$ in \mathcal{D} are all independent and identically distributed (iid)
- Thus, Likelihood is the probability of \mathcal{D} under iid assumption:

$$
\begin{aligned}
& \hat{w}=\max _{w} L(\mathcal{D}, w)=\max _{w} \prod_{i=1}^{n} p\left(y^{(i)} \mid \phi\left(x^{(i)}\right)\right)= \\
& \max _{w} \prod_{i=1}^{n}\left(\frac{1}{1+e^{-(w)^{T} \phi(x)}}\right)^{y^{(i)}}\left(\frac{e^{-(w)^{T} \phi(x)}}{1+e^{-(w)^{T} \phi(x)}}\right)^{1-y^{(i)}}
\end{aligned}
$$

- \hat{w} is an estimator for w

Training LR (Single node sigmoidal NN)

(1) Thus, Maximum Likelihood Estimator for w is

$$
\begin{aligned}
& \hat{w}=\max _{w} L(\mathcal{D}, w)=\max _{w} \prod_{i=1}^{n} p\left(y^{(i)} \mid \phi\left(x^{(i)}\right)\right)= \\
& \max _{w} \prod_{i=1}^{n}\left(\frac{1}{1+e^{-(w)^{T} \phi(x)}}\right)^{y^{(i)}}\left(\frac{e^{-(w)^{\top} \phi(x)}}{1+e^{-(w)^{\top} \phi(x)}}\right)^{1-y^{(i)}}
\end{aligned}
$$

(2) \hat{w} is an estimator for w

- To maximize the likelihood $P(\mathcal{D} ; w)$ with respect to w, one can minimize the negative \log-likelihood $E(w)=-\log P(\mathcal{D} ; w)$ with respect to w. Derive the expression for $E(w)$.
(0) $E(w)$ can be minimized with respect to w using gradient descend algorithm. Derive the expression of the gradient of $E(w)$ with respect to w.

