Lecture 17: Training Neural Networks, Logistic

Regression
Instructor: Prof. Ganesh Ramakrishnan

L March 11, 2016 1/ 16



Feed-forward Neural Nets

inputs
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Eg: Feed-forward Neural Net for XOR

inputs
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Training a Neural Network

STEP 0: Pick a network architecture
@ Number of input units: Dimension of features ¢ <)<(i)>.

@ Number of output units: Number of classes.

@ Reasonable default: 1 hidden layer, or if >1 hidden layer, have
same number of hidden units in every layer.

@ Number of hidden units in each layer a constant factor (3 or 4)
of dimension of x.

o We will use
1.

» the smooth sigmoidal function g(s) = Tre—: How do we train
a single node sigmoidal neural network?

» instead of the non-smooth step function g(s) =1 if s € [6, c0)
and g(s) = 0 otherwise: Single node step function neural

network is perceptron, which we know how to train.
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Training for single node sigmoidal NN

© Neural Networks: Cascade of layers of sigmoidal perceptrons
giving you smoothness and non-linearity
@ Single node sigmoidal NN is also called (Binary) Logistic
Regression, abbreviated as LR
> sign ((w*)ngb(x)) replaced by g((w*)Tqb(x)) where g(s) is
sigmoid function: g(s) = ﬁ
Q@ g((w)Top(x) = m € [0,1] can be intepreted as
Priy =1]x)
» Then Pr(y = 0|x) =?

1
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Probability theory review in context of LR

@ Sample space(S): A sample space is defined as a set of all
possible outcomes of an experiment. For LR:
S = {all possible examples x with class y}. |S| = oo

@ Event (E) : An event is defined as any subset of the sample
space. Total number of distinct events possible is 21°, where |S|
is the number of elements in the sample space.

@ Random variable: A random variable is a mapping (or function)
from set of events to a set of real numbers.
¢(.) is a continuous random vector

$(.):2° > RP

Y is a discrete random (class) variable mapping events to a
countable set {0, 1}

oS
Y:2>—{0,1}
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Axioms of Probability

@ For every event E, 0 < Pr(E) <1
e Pr(S) =1

o If £y, Ey, ... E, is a set of pairwise disjoint events, then

Pr(U E) = Z Pr(E;)
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Bayes' Theorem

Let By, Bs, ..., B, be a set of mutually exclusive events that together
form the sample space S. Let A be any event from the same sample

space, such that P(A) > 0. Then,

- Pr(B; N A)
PABIA) = B A A T P B A) - PHBnA) D)
Using the relation P(B;N A) = P(B;) - P(A/B))
Pr(B;) - Pr(A/B;) 2)
> Pr(By) - Pr(A/B))

j=1

Pr(B;/A) =
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Distribution Functions

e Probability Mass Function (PMF): Probability that a discrete
random variable (vector) is exactly equal to some value in the
sample space

py(0) = Pr(Y=10) and py(1) = Pr(Y=1)

e Probability Density Function (PDF): Function that describes
the relative likelihood for this random variable to occur at a given
point in the sample space, that is p(¢;(.) = v). And if D C R,

Pr(¢;(.) € D) = [, p(v)dv

e Joint Density Function: In the case of continuous random
vectors, if p(¢1(.), P2(.), ..., ¢p(.)) is a joint pdf and if D C RP,

weo- . o
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Marginalization

e Marginal probability is the unconditional probability P(A) of the
event A; that is, the probability of A, regardless of whether event
B did or did not occur.
Example:

Poi()(V) =

/ / / / P(Vi, .oy Vi1, Vy Vig1, ooy Vp)dvy..dVi_1dVig g ..dv,
Vit %

P
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Conditional Density

If #(.) and Y are two random variable then we can define the
conditional probability density
@ of Ygiven ¢(.), denoted Y|¢(.), i.e., Discrete Case
pvis() (Y= y|o(x)): Discriminative Probabilistic Classifier

E.g: Logistic Regression (single node sigmoid NN) directly
models py|¢() (Y: 1|¢(X)) = m. Then
Pyio() (Y= 0[p(x)) =7
OR

@ of ¢(.) given Y, denoted ¢(.)|Y, i.e., Continuous case
p¢(v)‘y(v|y): Generative Probabilistic Classifier
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Thus...

Joint Probability Distribution

® py(),v(v, Y=y) or simply written as p(v,y)
» “Probability density at ¢(.) =v and Y=y"

Conditional Probability Distribution
o p(Y=ylo(x)) VS. psyy (v]Y =) (or simply p(vly))

» “Probability of Y=y given ¢(x)" OR "“Probability of ¢(.) =

given Y= y"
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Rules of Probability

@ Sum Rule (marginalization/ summing out)

p(6(x) =Y p(Y 6(x,)
y

@ Bayes Rule: Gives a way a way of reversing conditional

probabilities

_ pvip(v) _ _p(y,v)p(v)
P <V|y ) — ply) T Zvplylv)p(v)
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Thus: Conditional pmf/pdf

If ¢(.) and Y are two random variables then we can define the
conditional probability density

@ of Ygiven ¢(.), denoted Y|¢(.), i.e., Discrete Case

» p(y|o(x)) is directly modeled and while you do not need to
invoke Bayes rule, you only need to ensure the sum rule (pmfs
sum to 1).

» Logistic Regression (single node sigmoid NN) directly models

- "o
PLY = 1190) = T tma 2nd PV =0190(9) = 1 COmes

OR
@ of ¢(.) given Y, denoted ¢(.)|Y, i.e., Continuous case
p(v]y) = Pv)P(v)

PPV

Vv
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Training LR (Single node sigmoidal NN)

© Estimator is a function of the dataset
D = {60, D), (642, ), ..., ((x, "))} which is
meant to approximate the parameter w.

@ Maximum Likelihood Estimator: Estimator w that maximizes the
likelihood L(D; w) of the data D.

» Assumes that all the instances

(1), YD), (D, Y1), .., (37, i) in D are all
independent and identically distributed (iid)
» Thus, Likelihood is the probability of D under iid assumption:

W= max L(D,w) = mVaXHP(}/(i)W(X(i))) =

i=1

" 1 S T\
mﬁxﬂ (1 n e—(w>T¢<x>) 1+ e (W60

» wis an estimator for w
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Training LR (Single node sigmoidal NN)

@ Thus, Maximum Likelihood Estimator for w is

W= max L(D,w) = ijHP(y(i)W(Xm)) =

i=1

i — ()
ﬁ 1 A wTog Y
M LI\ T ot 1o o (7509

i=1
@ wis an estimator for w

©® To maximize the likelihood P(D; w) with respect to w, one can
minimize the negative log-likelihood E(w) = —logP(D; w) with
respect to w. Derive the expression for E(w).

@ E(w) can be minimized with respect to w using gradient
descend algorithm. Derive the expression of the gradient of
E(w) with respect to w.
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