Lecture 17: Training Neural Networks, Logistic Regression

Instructor: Prof. Ganesh Ramakrishnan

Training a Neural Network

STEP 0: Pick a network architecture

- Number of input units: Dimension of features $\phi\left(x^{(i)}\right)$.
- Number of output units: Number of classes.
- Reasonable default: 1 hidden layer, or if >1 hidden layer, have same number of hidden units in every layer.
- Number of hidden units in each layer a constant factor (3 or 4) of dimension of x.
- We will use
 - ▶ the smooth sigmoidal function $g(s) = \frac{1}{1+e^{-s}}$: How do we train a single node sigmoidal neural network?
 - ▶ instead of the non-smooth step function g(s) = 1 if $s \in [\theta, \infty)$ and g(s) = 0 otherwise: Single node step function neural network is perceptron, which we know how to train.

Training for single node sigmoidal NN

- Neural Networks: Cascade of layers of sigmoidal perceptrons giving you smoothness and non-linearity
- Single node sigmoidal NN is also called (Binary) Logistic Regression, abbreviated as LR
 - ► $sign\left((w^*)^T\phi(x)\right)$ replaced by $g\left((w^*)^T\phi(x)\right)$ where g(s) is sigmoid function: $g(s) = \frac{1}{1+e^{-s}}$
- $g\left((w^*)^T\phi(x)\right) = \frac{1}{1 + \mathrm{e}^{-(w^*)^T\phi(x)}} \in [0, 1] \text{ can be interpreted as } Pr(y = 1|x)$
 - Then Pr(y = 0 | x) = ?

Probability theory review in context of LR

- Sample space(S): A sample space is defined as a set of all possible outcomes of an experiment. For LR: $S = \{all \ possible \ examples \ x \ with \ class \ y\}. \ |S| = \infty$
- Event (E): An event is defined as any subset of the sample space. Total number of distinct events possible is $2^{|S|}$, where |S| is the number of elements in the sample space.
- Random variable: A random variable is a mapping (or function) from set of events to a set of real numbers. $\phi(.)$ is a **continuous** random vector

$$\phi(.): 2^{S} \to \mathbb{R}^{p}$$

Y is a **discrete** random (class) variable mapping events to a countable set $\{0,1\}$

$$Y: 2^S \to \{0, 1\}$$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Axioms of Probability

- For every event E, $0 \le Pr(E) \le 1$
- Pr(S) = 1
- If E_1, E_2, \dots, E_n is a set of pairwise disjoint events, then

$$Pr(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} Pr(E_i)$$

Bayes' Theorem

Let $B_1, B_2, ..., B_n$ be a set of mutually exclusive events that together form the sample space S. Let A be any event from the same sample space, such that P(A) > 0. Then,

$$Pr(B_i/A) = \frac{Pr(B_i \cap A)}{Pr(B_1 \cap A) + Pr(B_2 \cap A) + \dots + Pr(B_n \cap A)}$$
(1)

Using the relation $P(B_i \cap A) = P(B_i) \cdot P(A/B_i)$

$$Pr(B_i/A) = \frac{Pr(B_i) \cdot Pr(A/B_i)}{\sum_{j=1}^{n} Pr(B_j) \cdot Pr(A/B_j)}$$
(2)

Distribution Functions

• **Probability Mass Function** (PMF): Probability that a discrete random variable (vector) is exactly equal to some value in the sample space

$$p_{Y}(0) = Pr(Y = 0) \text{ and } p_{Y}(1) = Pr(Y = 1)$$

• **Probability Density Function** (PDF): Function that describes the relative likelihood for this random variable to occur at a given point in the sample space, that is $p(\phi_j(.) = v)$. And if $D \subseteq \Re$,

$$Pr(\phi_j(.) \in D) = \int_D p(v) dv$$

• **Joint Density Function:** In the case of continuous random vectors, if $p(\phi_1(.), \phi_2(.), \dots, \phi_p(.))$ is a joint pdf and if $D \subseteq \Re^p$,

$$Pr(\phi(.) \in D) = \int \int \dots \int_{\mathbf{v} \in D} p(\mathbf{v}) d\mathbf{v}$$

March 11, 2016 9 / 16

Marginalization

 Marginal probability is the unconditional probability P(A) of the event A; that is, the probability of A, regardless of whether event B did or did not occur.

Example:

$$\begin{split} & p_{\phi_{i}(.)}(\widehat{v}) = \\ & \int_{v_{1}} ... \int_{v_{i-1}} \int_{v_{i+1}} ... \int_{v_{p}} p(v_{1},..,v_{i-1},\widehat{v},v_{i+1},..,v_{p}) dv_{1}... dv_{i-1} dv_{i+1}... dv_{p} \end{split}$$

◆ロト ◆団ト ◆豆ト ◆豆 ・ りへで

March 11, 2016 10 / 16

Conditional Density

If $\phi(.)$ and Y are two random variable then we can define the conditional probability density

1 of Y given $\phi(.)$, denoted $Y|\phi(.)$, *i.e.*, **Discrete Case** $p_{Y|\phi(.)}(Y=y|\phi(x))$: **Discriminative Probabilistic Classifier**

E.g. Logistic Regression (single node sigmoid NN) directly models $p_{Y|\phi(.)}\left(Y=1|\phi(x)\right)=\frac{1}{1+e^{-(w)^T\phi(x)}}$. Then $p_{Y|\phi(.)}(Y=0|\phi(x))=?$ OR

② of $\phi(.)$ given Y, denoted $\phi(.)|Y$, *i.e.*, Continuous case $p_{\phi(.)|Y}(\mathbf{v}|y)$: Generative Probabilistic Classifier

March 11, 2016 11 / 16

Thus...

Joint Probability Distribution

- $p_{\phi(.),Y}(\mathbf{v},Y=y)$ or simply written as $p(\mathbf{v},y)$
 - ▶ "Probability density at $\phi(.) = \mathbf{v}$ and Y = y"

Conditional Probability Distribution

- $p(Y = y | \phi(x))$ VS. $p_{\phi(.)|Y}(\mathbf{v}|Y = y)$ (or simply $p(\mathbf{v}|y)$)
 - ▶ "Probability of Y = y given $\phi(x)$ " OR "Probability of $\phi(.) = \mathbf{v}$ given Y = y"

Rules of Probability

Sum Rule (marginalization/ summing out)

$$p(\phi(x)) = \sum_{y'} p(y', \phi(x),)$$

 Bayes Rule: Gives a way a way of reversing conditional probabilities

$$p(\mathbf{v}|y) = \frac{p(y|\mathbf{v})p(\mathbf{v})}{p(y)} = \frac{p(y,\mathbf{v})p(\mathbf{v})}{\sum_{\mathbf{v}} p(y|\mathbf{v})p(\mathbf{v})}$$

Thus: Conditional pmf/pdf

If $\phi(.)$ and Y are two random variables then we can define the conditional probability density

- **1** of Y given $\phi(.)$, denoted $Y|\phi(.)$, *i.e.*, **Discrete Case**
 - ▶ $p(y|\phi(x))$ is directly modeled and while you do not need to invoke Bayes rule, you only need to ensure the sum rule (pmfs sum to 1).
 - ▶ Logistic Regression (single node sigmoid NN) directly models $p(Y=1|\phi(x))=\frac{1}{1+e^{-(w)^T\phi(x)}}$ and $p(Y=0|\phi(x))=\frac{e^{-(w)^T\phi(x)}}{1+e^{-(w)^T\phi(x)}}$

OR

of $\phi(.)$ given Y, denoted $\phi(.)|Y$, *i.e.*, Continuous case $p(\mathbf{v}|y) = \frac{p(y|\mathbf{v})p(\mathbf{v})}{\int_{\mathbf{v}'} p(y|\mathbf{v}')p(\mathbf{v}')}$

March 11, 2016 14 / 16

Training LR (Single node sigmoidal NN)

- Estimator is a function of the dataset $\mathcal{D} = \left\{ (\phi(x^{(1)}, y^{(1)}), (\phi(x^{(2)}, y^{(2)}), \dots, (\phi(x^{(n)}, y^{(n)})) \right\} \text{ which is meant to approximate the parameter } w.$
- **2** Maximum Likelihood Estimator: Estimator \widehat{w} that maximizes the likelihood $L(\mathcal{D}; w)$ of the data \mathcal{D} .
 - Assumes that all the instances $(\phi(x^{(1)}, y^{(1)}), (\phi(x^{(2)}, y^{(2)}), \dots, (\phi(x^{(n)}, y^{(n)}))$ in \mathcal{D} are all independent and identically distributed (iid)
 - ▶ Thus, Likelihood is the probability of \mathcal{D} under iid assumption:

$$\begin{split} \hat{w} &= \max_{w} L(\mathcal{D}, w) = \max_{w} \prod_{i=1}^{n} p(y^{(i)} | \phi(x^{(i)})) = \\ \max_{w} \prod_{i=1}^{n} \left(\frac{1}{1 + e^{-(w)^{T} \phi(x)}} \right)^{y^{(i)}} \left(\frac{e^{-(w)^{T} \phi(x)}}{1 + e^{-(w)^{T} \phi(x)}} \right)^{1 - y^{(i)}} \end{split}$$

 \hat{w} is an estimator for w

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Training LR (Single node sigmoidal NN)

Thus, Maximum Likelihood Estimator for w is

$$\hat{w} = \max_{w} L(\mathcal{D}, w) = \max_{w} \prod_{i=1}^{n} p(y^{(i)} | \phi(x^{(i)})) =$$

$$\max_{w} \prod_{i=1}^{n} \left(\frac{1}{1 + e^{-(w)^{T} \phi(x)}} \right)^{y^{(i)}} \left(\frac{e^{-(w)^{T} \phi(x)}}{1 + e^{-(w)^{T} \phi(x)}} \right)^{1 - y^{(i)}}$$

- ② \hat{w} is an estimator for w
 - To maximize the likelihood $P(\mathcal{D}; w)$ with respect to w, one can minimize the negative log-likelihood $E(w) = -logP(\mathcal{D}; w)$ with respect to w. Derive the expression for E(w).
 - **2** E(w) can be minimized with respect to w using gradient descend algorithm. Derive the expression of the gradient of E(w) with respect to w.

