
Midsem solutions

Tuesday 1st March, 2016

Problem 1. Support Vector Regression:

1. If all training data points lie strictly inside the ε-band of the SVR, then for all i,
ξi = ξ∗i = 0 and using basic knowledge of SVR, we know that for all such points,
yi−w>φ(xi)−b < ε+ξi and b+w>φ(xi)−yi < ε+ξ∗i . That is, yi−w>φ(xi)−b−ε−ξi < 0
and b+ w>φ(xi)− yi − ε− ξ∗i < 0.

Since αi(yi−w>φ(xi)− b− ε− ξi) = 0 and α∗i (b+w>φ(xi)− yi− ε− ξ∗i ) = 0, we must
have for all i, αi = α∗i = 0.

⇒ w =
∑n

i=1(αi − α∗i )φ(xi) = 0

Thus, the regression line will simply be f(x) = b, the bias term! In the case of a single
dimensional φ(x), this will mean that f(x) will be a simple horizontal line!

Any two points are ok for the second part (based on your experience with the SVR
applet at https://www.csie.ntu.edu.tw/~cjlin/libsvm/ or any other SVR imple-
mentation, or your understanding of SVR

(4 Marks)

2. (a) justification using strong duality: solving the SVR dual is equivalent to solving
the primal owing to strong duality. Strong duality holds because KKT conditions are
necessary and sufficient conditions owing to convexity of objective and of constraints
(which are just linear). (b) while one could consider optimizing the dual using coor-
dinate ascent (one coordinate at a time), the dual optimization problem has a linear
constraint in

∑
i(α
∗
i −αi) = 0. Thus, one simply cannot do coordinate ascent with one

coordinate at a time. (c) block coordinate ascent: Since either αi = 0 or α∗i = 0 for
any i, SMO minimally does block coordinate ascent in two coordinates at a time αi

and αj or α∗i and α∗j while holding all other αk and α∗k values to be constants from the
previous iterations.

(3 Marks)

3. This was stated on slide 16 of https://www.cse.iitb.ac.in/~cs725/notes/lecture-slides/
lecture-09-unannotated.pdf of the class notes but not proved. Wish some of you
attempted it and tried to rationalize this statement!
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We will prove by contradiction. Suppose for any i, ξ̂i < 0 were the optimal solution,
then

y −wTφ(xi)− b ≤ ε− ξ̂i < ε− 0

We claim that

(a) keeping all other values of ξj (for j 6= i) and ξ∗j (all j including i) constant while
setting ξi = 0 continues satisfying all the constraints

(b) because ξ2i = 0 <
(
ξ̂i

)2
and all other variable values are the same, use of ξi yields

a lower value of the objective than does ξ̂i.

This contradicts our assumption that for some i, ξ̂i < 0 was the optimal solution.
Thus, at optimal solution, we must have that for all i, ξ̂i = 0

We can similarly prove that ξ̂∗i = 0 for all i.

(4 Marks)

Problem 2. • Its difference with Ridge regression is that here b is not captured within
w, and b is not minimized as part of minimizing ‖w‖2 as ridge regression did. Its
difference with Support Vector Regression is that there is no explicit ε band over
which the penalty is relaxed.

(2 Marks)
Solution:

• The objective function is convex in w and b as well as differentiable (you will need to
show why). In the absence of constraints, setting the gradient of the objective to 0
and solving should give us the global minima.

• Thus, ∇w,bL(w∗, b∗) = 0 is a necessary and sufficient condition for optimality

• w.r.t w, we have:
w + C

∑
i(φ(xi)φ

T (xi))w + C
∑

i(yi − b)φ(xi) = 0

• w.r.t b, we have:
nb+

∑
i(φ
>(xi)w − yi) = 0

• Unlike SVR formulation which had linear inequalities here we have only linear equali-
ties, which can be solved

• Thus, we obtain the closed form solution:

w = (Φ>Φ +
1

C


0

1
. . .

1

)−1Φ>y
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• LS-SVM gives us a closed-form expression for w. Owing to convexity (as discussed
before), this solution is the global minimum (optimum).

• Difference wrt Ridge regression: Overhead of estimating b!

b =
−1

n

∑
k

(φ>(xk)w − yk) = 0

• Difference wrt SVR: The value of b is computed as an average over multiple points.
In the case of SVR, the value b is computed using any one of some selected points
(support vectors) only which can lead to numerical in stability

• As in the case of ridge regression, we use the following identity1 (P−1+BTR−1B)−1BTR−1 =
PBT (BPBT+R)−1. We can show that the decision function becomes f(x) =

∑m
i=1 αiK(xk, xi)−

1
n

∑
k ((
∑m

i=1 αiK(x, xi))− yk)

where αi =
(
([K(xi, xj)] + 1

C
I)−1y

)
i

(5 Marks)

Problem 3. Show that the following kernel is positive semi-definite: K(x1, x2) = (<
x1, x2 > +c)d, where < x1, x2 > is an inner product of vectors x1 and x2 and d ∈ Z+.

Prove that (x>1 x2)
d is a Mercer kernel (d ∈ Z+, d ≥ 1)

• We want to prove that∫
x1

∫
x2

(x>1 x2)
dg(x1)g(x2) dx1dx2 ≥ 0,

for all square integrable functions g(x)

• Here, x1 and x2 are vectors s.t x1, x2 ∈ <t

• Thus,
∫
x1

∫
x2

(x>1 x2)
dg(x1)g(x2) dx1dx2

=

∫
x11

..

∫
x1t

∫
x21

..

∫
x2t

[∑
n1..nt

d!

n1!..nt!

t∏
j=1

(x1jx2j)
nj

]
g(x1)g(x2) dx11..dx1tdx21..dx2t

s.t.
t∑

i=1

ni = d

=
∑
n1...nt

d!

n1! . . . nt!

∫
x1

∫
x2

t∏
j=1

(x1jx2j)
nj g(x1)g(x2) dx1dx2

=
∑
n1...nt

d!

n1! . . . nt!

∫
x1

∫
x2

(xn1
11x

n2
12 . . . x

nt
1t )g(x1) (xn1

21x
n2
22 . . . x

nt
2t )g(x2) dx1dx2

1Recall we used it for Ridge regression on slide 12 of https://www.cse.iitb.ac.in/~cs725/notes/
lecture-slides/lecture-12-unannotated.pdf
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=
∑
n1...nt

d!

n1! . . . nt!
(

∫
x1

(xn1
11 . . . x

nt
1t )g(x1) dx1) (

∫
x2

(xn1
21 . . . x

nt
2t )g(x2) dx2)

(integral of decomposable product as product of integrals)

s.t.
t∑
i

ni = d

• Realize that both the integrals are basically the same, with different variable names

• Thus, the equation becomes:∑
n1...nt

d!

n1! . . . nt!
(

∫
x1

(xn1
11 . . . x

nt
1t )g(x1) dx1)

2 ≥ 0

(the square is non-negative for reals)

• Thus, we have shown that (x>1 x2)
d is a Mercer kernel.

What about
r∑

d=1

αd(x
>
1 x2)

d s.t. αd ≥ 0?

• K(x1, x2) =
r∑

d=1

αd(x
>
1 x2)

d

• Is

∫
x1

∫
x2

(
r∑

d=1

αd(x
>
1 x2)

d

)
g(x1)g(x2) dx1dx2 ≥ 0?

• We have ∫
x1

∫
x2

(
r∑

d=1

αd(x
>
1 x2)

d

)
g(x1)g(x2) dx1dx2

=
r∑

d=1

αd

∫
x1

∫
x2

(x>1 x2)
dg(x1)g(x2) dx1dx2

• We have already proved that
∫
x1

∫
x2

(x>1 x2)
dg(x1)g(x2) dx1dx2 ≥ 0

• Also, αd ≥ 0, ∀d

• Thus,
r∑

d=1

αd

∫
x1

∫
x2

(x>1 x2)
dg(x1)g(x2) dx1dx2 ≥ 0
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• By which, K(x1, x2) =
r∑

d=1

αd(x
>
1 x2)

d is a Mercer kernel.

(5 Marks)

Problem 4. This problem is directly related to problem 5 of tutorial 3 in which the weighing
factor rx

′
i of each training data point (xi, yi) is now also a function of the query or test data

point (x′, ?), so that we write it as rx
′

i = K(x′,xi) for i = 1, . . . ,m. Let rx
′

m+1 = 1 and let R
be an (m+ 1)× (m+ 1) diagonal matrix of rx

′
1 , r

x′
2 , . . . , r

x′
m+1.

R =


rx

′
1 0 ... 0
0 rx

′
2 ... 0

... ... ... ... 1
0 0 0 ... rx

′
m+1


Further, let

Φ =

φ1(x1) ... φp(x1) 1
... ... ... 1

φ1(xm) ... φp(xm) 1


and

ŵ =


w1

...
wp

b


and

y =

y1...
ym


The sum-square error function then becomes

1

2

m∑
i=1

ri(yi − (ŵTφ(xi) + b))2 =
1

2
||
√
Ry −

√
RΦŵ||22

where
√
R is a diagonal matrix such that each diagonal element of

√
R is the square root of

the corresponding element of R. This is a convex function being minimized (prove this using
techniques similar to what we employed for least squares linear regression) and therefore has
a global minimum at ŵx′

∗ where the gradient must become 0. (again work out the steps using
techniques similar to what we employed for least squares linear regression). The expression
for the solution ŵ∗ that minimizes this error function is therefore

ŵx′

∗ = (ΦTRΦ)−1ΦTRy

(4 Marks)
Let us refer to this model as local linear regression (Section 6.1.1 of Tibshi’s book).
As compared to linear regression, local linear regression gives more importance to points

in D that are closer/similar to x′ and less importance to points that are less similar. Thus,
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this method can be important if the regression curve is supposed to take different shapes or
different parameters in different parts of the space. For example, in two different regions, the
ideal regression curve might be linear in each but with different parameters. In this sense,
local linear regression comes close to k-nearest neighbor. But unlike k-nearest neighbor,
local linear regression gives you a smooth solution since contribution for regression at a
point comes from all data points (in proportion to their closeness) and not just the k closest
points.

(1.5 Marks)
Taking clue from the discussion above, one can try and plot this regression curve.

(1.5 Marks)
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