Quiz-1 Solutions

Sunday $21^{\text {st }}$ February, 2016

Problem 1.

Problem 2a. $\mathrm{f}\left(x_{1}, x_{2}\right)=1 /\left(x_{1} x_{2}\right)$ on R_{++}^{2}
To prove $\mathrm{f}\left(x_{1}, x_{2}\right)$ is convex/concave/neither we need to find the hessian first

$$
\begin{gathered}
f_{x_{1}}=\frac{\partial f}{\partial x_{1}}=-\frac{1}{x_{1}^{2} x_{2}} \\
f_{x_{1} x_{1}}=\frac{\partial f_{x_{1}}}{\partial x_{1}}=\frac{2}{x_{1}^{3} x_{2}} \quad f_{x_{2}}=\frac{\partial f}{\partial x_{2}}=-\frac{1}{x_{1} x_{2}^{2}} \\
f_{x_{1} x_{2}}=\frac{\partial f_{x_{2} x_{2}}}{\partial x_{2}}=\frac{\partial f_{x_{2}}}{\partial x_{2}}=\frac{2}{x_{1} x_{2}^{3}} \\
f_{x_{2} x_{1}}=\frac{\partial f_{x_{2}}}{\partial x_{1}}=\frac{1}{x_{1}^{2} x_{2}^{2}}
\end{gathered}
$$

So the Hessian is,

$$
\left|\begin{array}{cc}
f_{x_{1} x_{1}} & f_{x_{1} x_{2}} \\
f_{x_{2} x_{1}} & f_{x_{2} x_{2}}
\end{array}\right|=\left|\begin{array}{cc}
\frac{2}{x_{1}^{3} x_{2}} & \frac{1}{x_{1}^{2} x_{2}^{2}} \\
\frac{1}{x_{1}^{2} x_{2}^{2}} & \frac{2}{x_{1} x_{2}^{3}}
\end{array}\right|
$$

say the eigen values of the hessian are λ_{1} and λ_{2}
as x_{1}, x_{2} on R_{++}^{2}
$\lambda_{1}+\lambda_{2}=$ trace of the hessian $=\left(\frac{2}{x_{1}^{3} x_{2}}+\frac{2}{x_{1} x_{2}^{3}}\right)>0 \ldots$
$\lambda_{1} \cdot \lambda_{2}=$ The determinant of the hessian $=\frac{3}{x_{1}^{4} x_{2}^{4}}>0 \ldots$
From 1 and 2 we can conclude λ_{1} and $\lambda_{2}>0$ and the hessian is positive definite.
Hence, the given function is convex.
Problem 2b. Using the property of norm $\|a+b\|_{p} \leq\|a\|_{p}+\|b\|_{p}$ (triangle inequality) and $0 \leq \theta \leq 1$,

$$
\begin{gathered}
f(x)=\|x\|_{p} \\
f\left(\theta x_{1}+(1-\theta) x_{2}\right)=\left\|\theta x_{1}+(1-\theta) x_{2}\right\|_{p} \\
\leq\left\|\theta x_{1}\right\|_{p}+\left\|(1-\theta) x_{2}\right\|_{p} \\
\leq \theta\left\|x_{1}\right\|_{p}+(1-\theta)\left\|x_{2}\right\|_{p} \\
\leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)
\end{gathered}
$$

Hence, the given function is convex.

Problem 3. •

$$
\begin{equation*}
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}}\|\phi \mathbf{w}-\mathbf{y}\|^{2} \text { s.t. }\|\mathbf{w}\|_{1} \leq \eta, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\|\mathbf{w}\|_{1}=\left(\sum_{i=1}^{n}\left|w_{i}\right|\right) \tag{2}
\end{equation*}
$$

- Since $\|\mathbf{w}\|_{1}$ is not differentiable, one can express (2) as a set of constraints

$$
\sum_{i=1}^{n} \xi_{i} \leq \eta, w_{i} \leq \xi_{i},-w_{i} \leq \xi_{i}
$$

- The resulting problem is a linearly constrained Quadratic optimization problem (LCQP):

$$
\begin{equation*}
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}}\|\phi \mathbf{w}-\mathbf{y}\|^{2} \text { s.t. } \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \xi_{\mathbf{i}} \leq \eta, \mathbf{w}_{\mathbf{i}} \leq \xi_{\mathbf{i}},-\mathbf{w}_{\mathbf{i}} \leq \xi_{\mathbf{i}} \tag{3}
\end{equation*}
$$

- Lagrangian is

$$
\|\phi \mathbf{w}-\mathbf{y}\|^{2}+\beta\left(\sum_{i=1}^{n} \xi_{i}-\eta\right)+\sum_{i=1}^{n}\left(\theta_{i}\left(w_{i}-\xi_{i}\right)+\lambda_{i}\left(-w_{i}-\xi_{i}\right)\right)
$$

- KKT conditions: Setting gradient wrt w to 0:

$$
2\left(\phi^{T} \phi\right) \mathbf{w}-\mathbf{2} \phi^{\mathbf{T}} \mathbf{y}+(\theta-\lambda)=\mathbf{0}
$$

Setting gradient wrt ξ_{i} to 0 :

$$
\begin{gathered}
\beta-\theta_{i}-\lambda_{i}=0 \\
\beta\left(\sum_{i=1}^{n} \xi_{i}-\eta\right)=0 \\
\forall i, \theta_{i}\left(\mathbf{w}_{\mathbf{i}}-\xi_{\mathbf{i}}\right)=\mathbf{0} \text { and } \lambda_{\mathbf{i}}\left(-\mathbf{w}_{\mathbf{i}}-\xi_{\mathbf{i}}\right)=\mathbf{0}
\end{gathered}
$$

- We have also shown the equivalence of Lasso formulations in (2) and (4):

$$
\begin{equation*}
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}}\|\phi \mathbf{w}-\mathbf{y}\|^{2}+\lambda\|\mathbf{w}\|_{1} \tag{4}
\end{equation*}
$$

