Q1 Gradient descent is a very helpful algorithm. But it is not guaranteed to converge to global minima always. Give an example of a continuous function and initial point for which gradient descent converges to a value which is not global minima?

Q2 (a) Consider the function

$$f(x) = x_1^2 - 4x_1 + 2x_1x_2 + 2x_2^2 + 2x_2 + 14$$

This function has a minimum at $\mathbf{x} = (5,-3)^T$. Suppose you are at a point $(4,-4)^T$ after few iterations, using the **exact line search** algorithm discussed in the class find the point for the next iteration.

- (b) Now consider solving the Least Squares Linear Regression problem using the gradient descent algorithm. And let us say $w^{(0)} = 0$ and that the step length $t^{(k)}$ is computed using exact line search for each value of k. In how many steps will the gradient descent algorithm converge? What would be your answer if we had a different initialization for $w^{(0)}$?
- Q3 Suppose you are solving the equation Ax=b using gradient descent on least squares solution. How do you think the Eigenvalues of the matrix affect the convergence?

(Hint: Consider a 2x2 diagonal matrix for A what do you observe?) [Source : Quora]