Tutorial 3

Friday 29th January, 2016; 23:17

Problem 1. Which of the following sets are convex?

- 1. A slab, i.e., a set of the form $\{x \in \mathbb{R}^n | \alpha \leq a^T x \leq \beta\}$.
- 2. A rectangle, i.e., a set of the form $\{x \in \mathbb{R}^n | \alpha_i \leq x_i \leq \beta_i, i = 1, \dots, n\}$.
- 3. A wedge, i.e., $\{x \in \mathbb{R}^n | a_1^T x \le b_1, a_2^T x \le b_2\}.$
- 4. The set of points closer to a given point than a given set, i.e., $\{x \mid ||x x_0||_2 \le ||x y||_2$ for all $y \in S$ where $S \subset \mathbb{R}^n$.
- 5. The set of points closer to a set than another, i.e., $\{x | \operatorname{dist}(x, S) \leq \operatorname{dist}(x, T)\}$, where $S, T \subset \mathbb{R}^n$, and $\operatorname{dist}(x, S) = \inf\{||x z||_2 | z \in S\}$.
- 6. The set $\{x | x + S_2 \subset S_1\}$, where $S_1, S_2 \subset \mathbb{R}^n$ with S_1 convex.
- 7. The set of points whose distance to a does not exceeds a fixed fraction θ of the distance to b, i.e., the set $\{x \mid ||x a||_2 \le \theta ||x b||_2\}$. Assume $a \ne b$ and $0 \le \theta \le 1$.

Besides trying to prove a set convex, try to plot the set into two dimensions to get a feel of the shape of the set. (Exercise 2.12 of Convex Optimization, Boyd et al http://stanford.edu/boyd/cvxbook/)

Problem 2. Suppose $f : \mathbb{R} \to \mathbb{R}$ is convex, and $a, b \in \text{dom} f$ with a < b.

1. Show that

$$f(x) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$$

for all $x \in [a, b]$.

2. Show that

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \frac{f(b) - f(x)}{b - x}$$

for all $x \in (a, b)$. Draw a sketch that illustrates this inequality.

3. Suppose f is differentiable. Use the result in (2) to show that

$$f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b)$$

4. Suppose f is twice differentiable. Use the result in (3) to show that $f''(a) \ge 0$ and $f''(b) \ge 0$.

(Exercise 3.1 of Convex Optimization, Boyd et al http://stanford.edu/ boyd/cvxbook/)

Problem 3. Determine which one is convex/concave:

1.
$$f(x) = e^x - 1$$
 on \mathbb{R} .

- 2. $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
- 3. $f(x_1, x_2) = 1/(x_1 x_2)$ on \mathbb{R}^2_{++} .
- 4. $f(x_1, x_2) = x_1/x_2$ on \mathbb{R}^2_{++} .
- 5. $f(x_1, x_2) = x_1^2/x_2$ on $\mathbb{R} \times \mathbb{R}_{++}$.
- 6. $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$, on \mathbb{R}^2_{++} .

(Exercise 3.16 of Convex Optimization, Boyd et al http://stanford.edu/ boyd/cvxbook/)

Problem 4. Suppose $p \ge 1$. Show that the function

$$f(x) = \left(\sum_{i=1}^{n} x_i^P\right)^{1/p}$$

which $\operatorname{dom} f = \mathbb{R}^n_{++}$ is convex.

Now suppose $p < 1, p \neq 0$. Show that f is concave on the same domain. (Exercise 3.17 of Convex Optimization, Boyd et al http://stanford.edu/ boyd/cvxbook/)

Problem 5. Consider a data set in which each data point y_i is associated with a weighting factor r_i , so that the sum-square error function becomes

$$\frac{1}{2}\sum_{i=1}^{m} r_i (y_i - w^T \phi(x_i))^2$$

Find an expression for the solution w^* that minimizes this error function. The weights r_i 's are known before hand. (Exercise 3.3 of Pattern Recognition and Machine Learning, Christopher Bishop)