Tutorial 3

Friday $29^{\text {th }}$ January, 2016; 23:17

Problem 1. Which of the following sets are convex?

1. A slab, i.e., a set of the form $\left\{x \in \mathbb{R}^{n} \mid \alpha \leq a^{T} x \leq \beta\right\}$.
2. A rectangle, i.e., a set of the form $\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=1, \ldots, n\right\}$.
3. A wedge, i.e., $\left\{x \in \mathbb{R}^{n} \mid a_{1}^{T} x \leq b_{1}, a_{2}^{T} x \leq b_{2}\right\}$.
4. The set of points closer to a given point than a given set, i.e., $\left\{x \mid\left\|x-x_{0}\right\|_{2} \leq\right.$ $\|x-y\|_{2}$ for all $\left.y \in S\right\}$ where $S \subset \mathbb{R}^{n}$.
5. The set of points closer to a set than another, i.e., $\{x \mid \operatorname{dist}(x, S) \leq \operatorname{dist}(x, T)\}$, where $S, T \subset \mathbb{R}^{n}$, and $\operatorname{dist}(x, S)=\inf \left\{| | x-z \|_{2} \mid z \in S\right\}$.
6. The set $\left\{x \mid x+S_{2} \subset S_{1}\right\}$, where $S_{1}, S_{2} \subset \mathbb{R}^{n}$ with S_{1} convex.
7. The set of points whose distance to a does not exceeds a fixed fraction θ of the distance to b, i.e., the set $\left\{x \mid\|x-a\|_{2} \leq \theta\|x-b\|_{2}\right\}$. Assume $a \neq b$ and $0 \leq \theta \leq 1$.

Besides trying to prove a set convex, try to plot the set into two dimensions to get a feel of the shape of the set. (Exercise 2.12 of Convex Optimization, Boyd et al http://stanford.edu/ boyd/cvxbook/)

Problem 2. Suppose $f: \mathbb{R} \mapsto \mathbb{R}$ is convex, and $a, b \in \operatorname{dom} f$ with $a<b$.

1. Show that

$$
f(x) \leq \frac{b-x}{b-a} f(a)+\frac{x-a}{b-a} f(b)
$$

for all $x \in[a, b]$.
2. Show that

$$
\frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(a)}{b-a} \leq \frac{f(b)-f(x)}{b-x}
$$

for all $x \in(a, b)$. Draw a sketch that illustrates this inequality.
3. Suppose f is differentiable. Use the result in (2) to show that

$$
f^{\prime}(a) \leq \frac{f(b)-f(a)}{b-a} \leq f^{\prime}(b)
$$

4. Suppose f is twice differentiable. Use the result in (3) to show that $f^{\prime \prime}(a) \geq 0$ and $f^{\prime \prime}(b) \geq 0$.
(Exercise 3.1 of Convex Optimization, Boyd et al http://stanford.edu/ boyd/cvxbook/)
Problem 3. Determine which one is convex/concave:
5. $f(x)=e^{x}-1$ on \mathbb{R}.
6. $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ on \mathbb{R}_{++}^{2}.
7. $f\left(x_{1}, x_{2}\right)=1 /\left(x_{1} x_{2}\right)$ on \mathbb{R}_{++}^{2}.
8. $f\left(x_{1}, x_{2}\right)=x_{1} / x_{2}$ on \mathbb{R}_{++}^{2}.
9. $f\left(x_{1}, x_{2}\right)=x_{1}^{2} / x_{2}$ on $\mathbb{R} \times \mathbb{R}_{++}$.
10. $\left.f\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha}\right)$, where $0 \leq \alpha \leq 1$, on \mathbb{R}_{++}^{2}.
(Exercise 3.16 of Convex Optimization, Boyd et al http://stanford.edu/ boyd/cvxbook/)
Problem 4. Suppose $p \geq 1$. Show that the function

$$
f(x)=\left(\sum_{i=1}^{n} x_{i}^{P}\right)^{1 / p}
$$

which $\operatorname{dom} f=\mathbb{R}_{++}^{n}$ is convex.
Now suppose $p<1, p \neq 0$. Show that f is concave on the same domain. (Exercise 3.17 of Convex Optimization, Boyd et al http://stanford.edu/ boyd/cvxbook/)

Problem 5. Consider a data set in which each data point y_{i} is associated with a weighting factor r_{i}, so that the sum-square error function becomes

$$
\frac{1}{2} \sum_{i=1}^{m} r_{i}\left(y_{i}-w^{T} \phi\left(x_{i}\right)\right)^{2}
$$

Find an expression for the solution w^{*} that minimizes this error function. The weights r_{i} 's are known before hand. (Exercise 3.3 of Pattern Recognition and Machine Learning, Christopher Bishop)

