Tutorial 5 - Solutions

Sunday $21^{\text {st }}$ February, 2016

Problem 1. Consider the matrix V whose columns are the vectors $\phi\left(x_{1}\right), \phi\left(x_{2}\right) \ldots, \phi\left(x_{n}\right)$. Then, one can see that $\mathcal{K}=V^{T} V$. Now, for any $y \in \mathbb{R}^{n}, y^{T} \mathcal{K} y=y^{T} V^{T} V y=\|V y\|^{2} \geq 0$ and hence, every gram matrix is positive semi-definite. (Solution also on page 6 of https:
//www.cse.iitb.ac.in/~cs725/notes/lecture-slides/lecture-13-annotated.pdf)
Problem 2. 1. $\cos \left(x_{1}-x_{2}\right)=\cos x_{1} \cos x_{2}+\sin x_{1} \sin x_{1}$. If one defines $\phi(x)$ as $[\cos x \sin x]^{T}$, then $\cos \left(x_{1}-x_{2}\right)=\phi^{T}\left(x_{1}\right) \phi\left(x_{2}\right)$. Use the property proved in Problem 1.
2. Since K_{1} and K_{2} are valid kernels, for any $n \times n$ kernel matrices \mathcal{K}_{1} and \mathcal{K}_{2} defined on K_{1} and K_{2} and any $y \in R^{n}$, we will have $y^{T} \mathcal{K}_{1} y \geq 0$ and $y^{T} \mathcal{K}_{2} y \geq 0$. Adding them, we get $y^{T} \mathcal{K}_{1} y+y^{T} \mathcal{K}_{2} y=y^{T}\left(\mathcal{K}_{1}+\mathcal{K}_{2}\right) y=y^{T} \mathcal{K} y \geq 0$. Since, our choice of y and n is arbitrary, all the kernel matrices \mathcal{K} defined on K are positive-definite and hence, K is also positive semi-definite.
3. Clearly, $K\left(x_{1}, x_{2}\right)=\left(<x_{1}, x_{2}>+c\right)^{d}$ is a polynomial with positive coefficients in $\left.<x_{1}, x_{2}\right\rangle$,i.e. a sum of monomials with positive coefficients in $\left\langle x_{1}, x_{2}\right\rangle$. If we prove that each monomial in $<x_{1}, x_{2}>$ induces a positive-semi definite matrix then using the result of previous sub-problem we are done. Consider $K^{\prime}\left(x_{1}, x_{2}\right)=<x_{1}, x_{2}>^{m}$ where m is some constant. Let $\phi(x)$ be a vector whose entries are of the form $x(1)^{i_{1}} x(2)^{i_{2}} \ldots x(n)^{i_{n}}$ such that $\sum_{j=1}^{n} i_{j}=m$ and $i_{j} \geq 0$ for all $j \in\{1,2, \ldots, n\}$. Then, $K^{\prime}\left(x_{1}, x_{2}\right)=\phi^{T}\left(x_{1}\right) \phi\left(x_{2}\right)$. Using property proved in Problem 1, K^{\prime} is a positive-semi definite kernel and hence, K is positive-semi definite too.
4. $e^{<x_{1}, x_{2}>}=\sum_{i=1}^{\infty} \frac{\left.\leq x_{1}, x_{2}\right\rangle^{i}}{i!}$. Clearly, each term in the summation is of the form $(<$ $\left.x_{1}, x_{2}>+c\right)^{d}$ times some positive coefficient and hence, induces a positive semi-definite matrix (using previous sub-problem).Now, use result of sub-problem 2 to see that summation of these terms is a positive-semi definite kernel as well.

Problem 3. Please take a look at the following link. Equation 6 is exactly the same as discussed in class. And in Section-3 (eqn 8-15) the closed from expression for SMO is explained.
http://link.springer.com/article/10.1023\%2FA\%3A1012474916001
Problem 4. - We have already stated the equivalence of Lasso formulations in (3) and (1). For this problem, we will go with the formulation in (3)

$$
\begin{equation*}
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}}\|\phi \mathbf{w}-\mathbf{y}\|^{2}+\lambda\|\mathbf{w}\|_{1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}}\|\phi \mathbf{w}-\mathbf{y}\|^{2} \text { s.t. }\|\mathbf{w}\|_{1} \leq \eta \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\|\mathbf{w}\|_{1}=\left(\sum_{i=1}^{n}\left|w_{i}\right|\right) \tag{3}
\end{equation*}
$$

- Since $\|\mathbf{w}\|_{1}$ is not differentiable, one can express (3) as a set of constraints

$$
\sum_{i=1}^{n} \xi_{i} \leq \eta, w_{i} \leq \xi_{i},-w_{i} \leq \xi_{i}
$$

- The resulting problem is a linearly constrained Quadratic optimization problem (LCQP):

$$
\begin{equation*}
\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}}\|\phi \mathbf{w}-\mathbf{y}\|^{2} \text { s.t. } \sum_{\mathbf{i}=1}^{\mathbf{n}} \xi_{\mathbf{i}} \leq \eta, \mathbf{w}_{\mathbf{i}} \leq \xi_{\mathbf{i}},-\mathbf{w}_{\mathbf{i}} \leq \xi_{\mathbf{i}} \tag{4}
\end{equation*}
$$

- Lagrangian is

$$
\|\phi \mathbf{w}-\mathbf{y}\|^{2}+\beta\left(\sum_{i=1}^{n} \xi_{i}-\eta\right)+\sum_{i=1}^{n}\left(\theta_{i}\left(w_{i}-\xi_{i}\right)+\lambda_{i}\left(-w_{i}-\xi_{i}\right)\right)
$$

- KKT conditions: Setting gradient wrt w to 0:

$$
2\left(\phi^{T} \phi\right) \mathbf{w}-\mathbf{2} \phi^{\mathbf{T}} \mathbf{y}+(\theta-\lambda)=\mathbf{0}
$$

Setting gradient wrt ξ_{i} to 0 :

$$
\beta-\theta_{i}-\lambda_{i}=0
$$

- Substituting for \mathbf{w} and θ_{1} and λ_{i} from the necessary and sufficient conditions above in the Lagrangian, we get the Langrage dual optimization problem
$\underset{\theta_{i}, \lambda_{i}}{\operatorname{argmin}}\left(\phi^{T} y+\frac{1}{2}(\lambda-\theta)\right)^{T}\left(\phi^{T} \phi\right)^{-1} \phi^{T} \phi\left(\phi^{T} \phi\right)^{-1}\left(\phi^{T} y+\frac{1}{2}(\lambda-\theta)\right)-2 \mathbf{y}^{\mathbf{T}} \phi\left(\phi^{\mathbf{T}} \phi\right)^{-\mathbf{1}}\left(\phi^{\mathbf{T}} \mathbf{y}+\frac{1}{2}(\lambda-\theta)\right)$
$+\mathbf{y}^{\mathbf{T}} \mathbf{y}+\beta \eta+(\theta-\lambda)^{\mathbf{T}}\left(\phi^{\mathbf{T}} \phi\right)^{-\mathbf{1}}\left(\phi^{\mathbf{T}} \mathbf{y}+\frac{\mathbf{1}}{\mathbf{2}}(\lambda-\theta)\right)$
$=\underset{\theta_{i}, \lambda_{i}}{\operatorname{argmin}}-\mathbf{y}^{\mathbf{T}} \phi\left(\phi^{\mathbf{T}} \phi\right)^{\mathbf{- 1}} \phi^{\mathbf{T}} \mathbf{y}+\mathbf{y}^{\mathbf{T}} \mathbf{y}+\beta \eta+\frac{1}{2}(\theta-\lambda)^{\mathbf{T}}\left(\phi^{\mathbf{T}} \phi\right)^{-\mathbf{1}}(\lambda-\theta)$
- Note that $\phi^{T} \phi$ is not a kernel (gram) matrix where $\phi \phi^{T}$ is (see page 11 of https ://www. cse.iitb.ac.in/~cs725/notes/lecture-slides/lecture-12-annotated.pdf)
- Even if using the identities on pages $12-14$ of https://www.cse.iitb.ac.in/~cs725/ notes/lecture-slides/lecture-12-annotated.pdf that was used for deriving the "kernelized dual" of ridge regression, we were to kernelize the first term above, the last term will remain $\frac{1}{2}(\theta-\lambda)^{T}\left(\phi^{T} \phi\right)^{-1}(\lambda-\theta)$ which cannot be kernelized.
- Thus, Lasso does not have purely kernelized dual

