Tutorial 5 - Solutions

Sunday 21st February, 2016

Problem 1. Consider the matrix V whose columns are the vectors $\phi(x_1), \phi(x_2) \dots, \phi(x_n)$. Then, one can see that $\mathcal{K} = V^T V$. Now, for any $y \in \mathbb{R}^n$, $y^T \mathcal{K} y = y^T V^T V y = ||Vy||^2 \ge 0$ and hence, every gram matrix is positive semi-definite. (Solution also on page 6 of https: //www.cse.iitb.ac.in/~cs725/notes/lecture-slides/lecture-13-annotated.pdf)

Problem 2. 1. $\cos(x_1 - x_2) = \cos x_1 \cos x_2 + \sin x_1 \sin x_1$. If one defines $\phi(x)$ as $[\cos x \sin x]^T$, then $\cos(x_1 - x_2) = \phi^T(x_1)\phi(x_2)$. Use the property proved in Problem 1.

- 2. Since K_1 and K_2 are valid kernels, for any $n \times n$ kernel matrices \mathcal{K}_1 and \mathcal{K}_2 defined on K_1 and K_2 and any $y \in \mathbb{R}^n$, we will have $y^T \mathcal{K}_1 y \ge 0$ and $y^T \mathcal{K}_2 y \ge 0$. Adding them, we get $y^T \mathcal{K}_1 y + y^T \mathcal{K}_2 y = y^T (\mathcal{K}_1 + \mathcal{K}_2) y = y^T \mathcal{K} y \ge 0$. Since, our choice of y and n is arbitrary, all the kernel matrices \mathcal{K} defined on K are positive-definite and hence, K is also positive semi-definite.
- 3. Clearly, $K(x_1, x_2) = (\langle x_1, x_2 \rangle + c)^d$ is a polynomial with positive coefficients in $\langle x_1, x_2 \rangle$, i.e. a sum of monomials with positive coefficients in $\langle x_1, x_2 \rangle$. If we prove that each monomial in $\langle x_1, x_2 \rangle$ induces a positive-semi definite matrix then using the result of previous sub-problem we are done. Consider $K'(x_1, x_2) = \langle x_1, x_2 \rangle^m$ where m is some constant. Let $\phi(x)$ be a vector whose entries are of the form $x(1)^{i_1}x(2)^{i_2}\dots x(n)^{i_n}$ such that $\sum_{j=1}^n i_j = m$ and $i_j \geq 0$ for all $j \in \{1, 2, ..., n\}$. Then, $K'(x_1, x_2) = \phi^T(x_1)\phi(x_2)$. Using property proved in Problem 1, K' is a positive-semi definite kernel and hence, K is positive-semi definite too.
- 4. $e^{\langle x_1, x_2 \rangle} = \sum_{i=1}^{\infty} \frac{\langle x_1, x_2 \rangle^i}{i!}$. Clearly, each term in the summation is of the form $(\langle x_1, x_2 \rangle + c)^d$ times some positive coefficient and hence, induces a positive semi-definite matrix (using previous sub-problem).Now, use result of sub-problem 2 to see that summation of these terms is a positive-semi definite kernel as well.

Problem 3. Please take a look at the following link. Equation 6 is exactly the same as discussed in class. And in Section-3 (eqn 8-15) the closed from expression for SMO is explained.

http://link.springer.com/article/10.1023%2FA%3A1012474916001

Problem 4. • We have already stated the equivalence of Lasso formulations in (3) and (1). For this problem, we will go with the formulation in (3)

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \|\phi \mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|_1$$
(1)

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \|\phi \mathbf{w} - \mathbf{y}\|^2 \quad \text{s.t.} \quad \|\mathbf{w}\|_1 \le \eta, \tag{2}$$

where

$$\|\mathbf{w}\|_1 = \left(\sum_{i=1}^n |w_i|\right) \tag{3}$$

• Since $\|\mathbf{w}\|_1$ is not differentiable, one can express (3) as a set of constraints

$$\sum_{i=1}^{n} \xi_i \le \eta, \ w_i \le \xi_i, \ -w_i \le \xi_i$$

• The resulting problem is a linearly constrained Quadratic optimization problem (LCQP):

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \|\phi \mathbf{w} - \mathbf{y}\|^2 \quad \text{s.t.} \quad \sum_{i=1}^{n} \xi_i \le \eta, \ \mathbf{w}_i \le \xi_i, \ -\mathbf{w}_i \le \xi_i \tag{4}$$

• Lagrangian is

$$\|\phi \mathbf{w} - \mathbf{y}\|^2 + \beta (\sum_{i=1}^n \xi_i - \eta) + \sum_{i=1}^n (\theta_i(w_i - \xi_i) + \lambda_i(-w_i - \xi_i))$$

• KKT conditions: Setting gradient wrt **w** to **0**:

$$2(\phi^T \phi)\mathbf{w} - 2\phi^T \mathbf{y} + (\theta - \lambda) = \mathbf{0}$$

Setting gradient wrt ξ_i to 0:

$$\beta - \theta_i - \lambda_i = 0$$

• Substituting for \mathbf{w} and θ_1 and λ_i from the necessary and sufficient conditions above in the Lagrangian, we get the Langrage dual optimization problem

$$\begin{aligned} & \underset{\theta_{i},\lambda_{i}}{\operatorname{argmin}} \left(\phi^{T} y + \frac{1}{2} (\lambda - \theta) \right)^{T} (\phi^{T} \phi)^{-1} \phi^{T} \phi (\phi^{T} \phi)^{-1} \left(\phi^{T} y + \frac{1}{2} (\lambda - \theta) \right) - 2 \mathbf{y}^{T} \phi (\phi^{T} \phi)^{-1} \left(\phi^{T} \mathbf{y} + \frac{1}{2} (\lambda - \theta) \right) \\ & + \mathbf{y}^{T} \mathbf{y} + \beta \eta + (\theta - \lambda)^{T} (\phi^{T} \phi)^{-1} \left(\phi^{T} \mathbf{y} + \frac{1}{2} (\lambda - \theta) \right) \\ & = \underset{\theta_{i},\lambda_{i}}{\operatorname{argmin}} - \mathbf{y}^{T} \phi (\phi^{T} \phi)^{-1} \phi^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y} + \beta \eta + \frac{1}{2} (\theta - \lambda)^{T} (\phi^{T} \phi)^{-1} (\lambda - \theta) \end{aligned}$$

- Note that $\phi^T \phi$ is not a kernel (gram) matrix where $\phi \phi^T$ is (see page 11 of https://www.cse.iitb.ac.in/~cs725/notes/lecture-slides/lecture-12-annotated.pdf)
- Even if using the identities on pages 12-14 of https://www.cse.iitb.ac.in/~cs725/ notes/lecture-slides/lecture-12-annotated.pdf that was used for deriving the "kernelized dual" of ridge regression, we were to kernelize the first term above, the last term will remain $\frac{1}{2} (\theta - \lambda)^T (\phi^T \phi)^{-1} (\lambda - \theta)$ which cannot be kernelized.
- Thus, Lasso does not have purely kernelized dual