Tutorial 5

Friday 19^{th} February, 2016; 07:46

Problem 1. Consider *n p*-dimensional vectors $\phi(x_1), \ldots, \phi(x_n)$. The Gram matrix of the collection is the $m \times m$ matrix \mathcal{K} with elements $\mathcal{K}_{ij} = \phi^T(x_i)\phi(x_j)$. Prove that a Gram Matrix is always positive semi-definite.

Problem 2. Kernels: Show that following kernels are positive semi-definite Hint: The property proved in problem 1 might be useful in some of these proofs

- 1. $K(x_1, x_2) = \cos(x_1 x_2)$
- 2. $K(x_1, x_2) = K_1(x_1, x_2) + K_2(x_1, x_2)$, where K_1 and K_2 are positive semi-definite kernels.
- 3. $K(x_1, x_2) = (\langle x_1, x_2 \rangle + c)^d$, where $\langle x_1, x_2 \rangle$ is inner product of vectors x_1 and x_2 and d = 2. Can this be generalized to polynomial of higher order (d > 2)?
- 4. $K(x_1, x_2) = \exp(\langle x_1, x_2 \rangle)$. Does this prove that RBF (gaussian) Kernel discussed in class $(K(x_1, x_2) = \exp(-\frac{||x_1-x_2||^2}{2\sigma^2})$ is positive semi-definite?

Problem 3. SMO (Sequential Minimal Optimization) algorithm. As described in the class, the SMO algorithm selects two β parameters, β_i and β_j and optimizes the objective value jointly for both these β 's. Derive the closed form expression for β_i^{new} and β_j^{new}

Problem 4. Remember the Lasso regression discussed in the class. Can you rewrite the optimization objective in a kernelized form?