Tutorial 5

Friday $19^{\text {th }}$ February, 2016; 07:46

Problem 1. Consider n p-dimensional vectors $\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)$. The Gram matrix of the collection is the $m \times m$ matrix \mathcal{K} with elements $\mathcal{K}_{i j}=\phi^{T}\left(x_{i}\right) \phi\left(x_{j}\right)$.
Prove that a Gram Matrix is always positive semi-definite.
Problem 2. Kernels: Show that following kernels are positive semi-definite Hint: The property proved in problem 1 might be useful in some of these proofs

1. $K\left(x_{1}, x_{2}\right)=\cos \left(x_{1}-x_{2}\right)$
2. $K\left(x_{1}, x_{2}\right)=K_{1}\left(x_{1}, x_{2}\right)+K_{2}\left(x_{1}, x_{2}\right)$, where K_{1} and K_{2} are positive semi-definite kernels.
3. $K\left(x_{1}, x_{2}\right)=\left(<x_{1}, x_{2}>+c\right)^{d}$, where $<x_{1}, x_{2}>$ is inner product of vectors x_{1} and x_{2} and $d=2$.
Can this be generalized to polynomial of higher order $(\mathrm{d}>2)$?
4. $K\left(x_{1}, x_{2}\right)=\exp \left(<x_{1}, x_{2}>\right)$.

Does this prove that RBF (gaussian) Kernel discussed in class $\left(K\left(x_{1}, x_{2}\right)=\exp \left(-\frac{\left\|x_{1}-x_{2}\right\|^{2}}{2 \sigma^{2}}\right)\right.$ is positive semi-definite?

Problem 3. SMO (Sequential Minimal Optimization) algorithm. As described in the class, the SMO algorithm selects two β parameters, β_{i} and β_{j} and optimizes the objective value jointly for both these β^{\prime} 's. Derive the closed form expression for $\beta_{i}^{\text {new }}$ and $\beta_{j}^{\text {new }}$

Problem 4. Remember the Lasso regression discussed in the class. Can you rewrite the optimization objective in a kernelized form?

