Tutorial 6

Detecting spam mails

One of the fundamental tasks of machine learning is to detect spam e-mails. You are given some words and a label of +1 if it is spam or -1 if it is not. Here **1** indicates the presence of word and **0** the absence of word. Assume the learning rate \mathcal{T} is $\frac{1}{2}$. Find the separating hyperplane using perceptron training algorithm

	area	sexy	your	in	singles	у
a	1	1	0	1	1	+1
b	0	0	1	1	0	-1
с	0	1	1	0	0	+1
d	1	0	0	1	0	-1
е	1	0	1	0	1	+1
f	1	0	1	1	0	-1

Computing power of perceptrons

Perceptrons can only separate Linearly separable data as discussed in class. Given n variables we can have 2^{2^n} boolean functions, but not all of these can be represented by a perceptron. For example when n=2 the XOR and XNOR cannot be represented by a perceptron. Given n boolean variables how many of 2^{2^n} boolean functions can be represented by a perceptron?

Kernel Perceptron

Recall the proof for convergence of the perceptron update algorithm. Now can this proof be extended to the kernel perceptron? Kernelized perceptron:

- INITIALIZE: $\alpha = zeroes()$
- REPEAT: for $\langle x_i, y_i \rangle$
 - If $sign\left(\sum_{j} \alpha_{j} y_{j} K(x_{j}, x_{j})\right) \neq y_{i}$
 - then, $\alpha_j = \alpha_j + 1$
 - endif

Number of iterations for convergence of perceptron update

Prove the following:

If $||w^*|| = 1$ and if there exists $\theta > 0$ such that for all i = 1, ..., n, $y_i(w^*)^T \phi(x_i) \ge \theta$ and $||\phi(x_i)||^2 \le \Gamma^2$ then the perceptron algorithm will make at most $\frac{\Gamma^2}{\theta^2}$ errors.