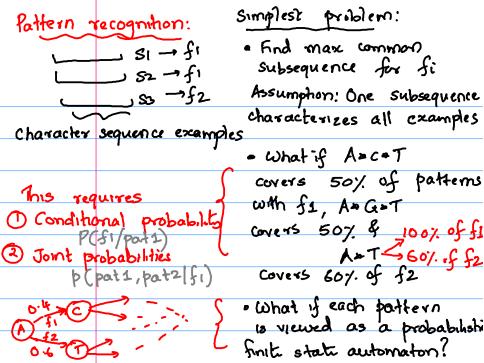
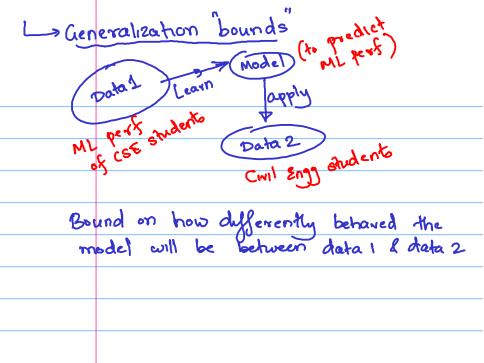
Introduction to Machine Learning
Instructor: Prof. Ganesh Ramakrishnan
Lecture 1: Introduction and Motivation

Introduction: What is Machine Learning?

ACTGTG. fl Regexps characteristic of fl ATCG. fl sfunctions Can be found using DP (max common subsequences) ACTG ALTG


 Machine learning is a sub-field of computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence.

In more simpler terms: Design 4 analysis of ML


Using algorithms that iteratively learn from data,

• Allowing computers to find hidden insights without being explicitly programmed where to look

operational luser perspective

Computational Learning Theory La ML algos invoke loss functions or neigher Grammay Inference problems/questions in ML S-> NP VP SI: Ram ate his share chapati. R(SI Grammar) UP - V NP Data Learn Enumerate possibilities

Introduction: What is Machine Learning?

 Typical algorithm has a (large) number of parameters whose values are learnt from the data

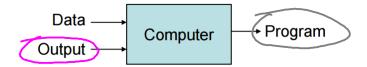
Applications include:

• Hand Written digit recognition

• Face Detection - Kishtra

Spam Detection

Speech recognition in Google Now


Real-time ads on web pages and mobile devices

Traditional Programming

Machine Learning

Example: Spam Detection

false alarm: -> You have won"

-> prizes@you hovewon.com
-> Short emails
-> Distribution of words/lengths

How to proceed...

This is an example of supervised learning problem:

(Assignment 1 coll expose you to this ancess) Data learn Split (40%. data => 400 | 1000 | test for | 12 8 spams)

(2% spams) | generalization Test split (Rest includes 12 sparms) Typically you tune model on a small part of train data called validation split

Example: Handwritten digit recognition

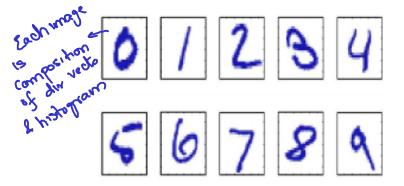


Figure: Digit recognition: Images are 28 * 28 pixels

- Represent input image as a vector $x \in R^{28*28}$
- Learn a classifier f(x) such that,

$$f: x \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

How to proceed...

This is an example of supervised learning problem:

- data
 training
 training
 testing
 testing
- testing

Course Overview

- predict categorical Eq. span Supervised classification perceptron
 - support vector machine
 - loss functions
 - kernels,
 - neural networks and deep learning
- Supervised regression (You by 4 predict a real
 Innear regression
 least square linear regression model
 Bayes Linear Regression

 - non-linear regression
 - ridge regression
 - lasso regression
 - SVM regression
- Unsupervised learning
 - clustering. K-Means
 - Expectation Maximization. Mixture of Gaussian

Logistics

- Prerequisites
 - basic Linear Algebra
 - basic Probability Theory
 - huge interest in learning new algorithms
- Tutorials
 - Tutorial sheet handed out every week, including a 'Tutorial 0' on the pre-requisites.
 - Expect students to try out each tutorial as homework
 - Solutions will be discussed at 1:30 PM before the following class. Not mandatory
- Assignments/Homework (Individual) -
 - 2 assignments closely following content covered in class
- Project Group of •3-4 Divided into 3 stages
 - · Stage O Idea Proposals Just before modern
 - Stage 1 Initial report on data-sets etc
 - Stage 2 Milestone
 - Stage 3 Final Presentation → After endsern

Tutonal O on Thursday

- Quizzes
 - Quiz 1 Week 3-4
 - Quiz 2 Week 12
- Midsem
- Endsem

	Assignments & Class Participation	20%
	Quizzes	15%
A	Project	20%
	Midsem	15%
Ì	Endsem	30%

Audit students have to attend classes, and submit assignments and project.

Course Materials

Notes will be periodically posted at 'cs725/calendar.html' and on modele bodhiree

Primary Book:

Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer The following books are recommended for additional reading:

- Pattern Recognition and Machine Learning, Christopher Bishop, Springer, 2006.
 - excellent in classification and regression
- Tom Mitchell, Machine Learning. McGraw-Hill, 1997
 - good explanation of algorithms and a bible for the course
- Kevin Murphy, Statistical Machine Learning

Classroom Policy

Bodhitree

- **Class Participation:** Every student will get points based on their participation in the following forms:
 - Homework questions
 - Class discussion, answering questions, asking good/foolish questions
 - Biogra/Bodhitree participation for discussing Tutorial and Specially Marked Questions (No private posts please!!)
 - Anything and everything which will make the course interesting

Honor Code

We want you to take a pledge that you will not be involved in any sort of plagiarism.

All the assignments, projects and quizzes will be checked for copy cases. In case of even a small case of copying, the name of *both* the parties will be handed over to the **DAC**¹

We also take a pledge that any sort of plagiarism will receive very strict reactions².

200

¹http://www1.iitb.ac.in/newacadhome/punishments201521July.pdf

²http://www1.iitb.ac.in/newacadhome/procedures201521July.pdf

Few Quotes

- A breakthrough in machine learning would be worth ten Microsofts - Bill Gates, Chairman, Microsoft
- Machine learning is the next Internet Tony Tether,
 Director, DARPA
- Machine learning is the hot new thing John Hennessy,
 President, Stanford
- Web rankings today are mostly a matter of machine learning -Prabhakar Raghavan, Dir. Research, Yahoo
- Machine learning is going to result in a real revolution Greg Papadopoulos, CTO, Sun
- Machine learning is today's discontinuity Jerry Yang, CEO,
 Yahoo