Lecture 3 - Regression
Instructor: Prof. Ganesh Ramakrishnan



The Simplest ML Problem: Least Square
Regression

@ Curve Fitting: Motivation

» Error measurement
» Minimizing Error

@ Method of Least Squares
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Curve Fitting: Motivation

@ Example scenarios:

» Prices of house to be fitted as a function of the area of the
house

» Temperature of a place to be fitted as a function of its latitude
and longitude and time of the year

» Stock Price (or BSE/Nifty value) to be fitted as a function of
Company Earnings

» Height of students to be fitted as a function of their weight

@ One or more observations/parameters in the data are expected
to represent the output in the future
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Higher you go, the more expensive the house!

o Consider the variation of price (in $) of house with variations in
its height (in m) above the ground level

@ These are specified as coordinates of the 8 points:
(x131), -5 (X8, ¥8)

@ Desired: Find a pattern or curve that characterizes the price as a
function of the height
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Errors and Causes

o (Observable) Data is generally collected through measurements
or surveys
» Surveys can have random human errors
» Measurements are subject to imprecision of the measuring or
recording instrument
» Qutliers due to variability in the measurement or due to some
experimental error;

@ Robustness to Errors: Minimize the effect of error in predicted
model

e Data cleansing: Outlier handling in a pre-processing step
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Curve Fitting: The Process

@ Curve fitting is the process of constructing a curve, or
mathematical function, that has the best fit to a series of data
points, possibly subject to constraints. - Wikipedia
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Curve Fitting: The Process

o Curve fitting is the process of constructing a curve, or
mathematical function, that has the best fit to a series of data
points, possibly subject to constraints. - Wikipedia

@ Need quantitative criteria to find the best fit
@ Error function E: curve f x dataset D — R

@ Error function must capture the deviation of prediction from
expected value
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Example

@ Consider the two candidate prediction curves in blue and red

respectively respectively. Which is the better fit?
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Figure: Price of house vs. its height - for illustration purpose only
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Question

What are some options for error function E(f, D) that measure the
deviation of prediction from expected value?
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Examples of E

@ and many more
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Question

Which choice F do you think can give us best fit curve and why?
Hint: Think of these errors as distances.
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Squared Error

> (fix) — y)?

D

@ One best fit curve corresponds to fthat minimizes the above
function. It..

@ Is continuous and differentiable
@ Can be visualized as square of Euclidean distance between
predicted and observed values

@ Mathematical optimization of this function: Topic of following
lectures.

@ This is the Method of least squares
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Regression, More Formally

@ Formal Definition
@ Types of Regression

@ Geometric Interpretation of least square solution

Linear Regression as a canonical example
e Optimization (Formally deriving least Square Solution)

e Regularization (Ridge Regression, Lasso), Bayesian
Interpretation (Bayesian Linear Regression)

e Non-parametric estimation (Local linear regression),

@ Non-linearity through Kernels (Support Vector Regression)
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Linear Regression with Illustration

@ Regression is about learning to predict a set of output variables
(dependent variables) as a function of a set of input variables
(independent variables)

@ Example

» A company wants to determine how much it should spend on

T.V commercials to increase sales to a desired level y*
» Basis?
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Linear Regression with Illustration

@ Regression is about learning to predict a set of output variables
(dependent variables) as a function of a set of input variables
(independent variables)

@ Example

» A company wants to determine how much it should spend on
T.V commercials to increase sales to a desired level y*
» Basis? It has previous observations of the form <x;,y;>,
* x; is an instance of money spent on advertisements and y; was
the corresponding observed sale figure
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Linear Regression with Illustration

@ Regression is about learning to predict a set of output variables
(dependent variables) as a function of a set of input variables
(independent variables)

@ Example

» A company wants to determine how much it should spend on
T.V commercials to increase sales to a desired level y*
» Basis? It has previous observations of the form <x;,y;>,
* x; is an instance of money spent on advertisements and y; was
the corresponding observed sale figure
» Suppose the observations support the following linear
approximation

y=Po+ P1*x (1)
Then x* = y%ﬁo can be used to determine the money to be
spent

@ Estimation for Regression: Determine appropriate value for 8y and
(1 from the past observations
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Linear Regression with Illustration
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Figure: Linear regression on T.V advertising vs sales figure
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What will it mean to have sales as a non-linear
function of investment in advertising?



Basic Notation

o Dataset: D =<x1,y1 >, .., < Xm, Ym >
- Notation (used throughout the course)

m = number of training examples
- x s = input/independent variables
- y’s = output/dependent/‘target’ variables
- (x,y) - a single training example
- (xj,y;) - specific example (jth training example)

J is an index into the training set

° gb, s are the attribute/basis functions, and let

(bl (Xl) (bg (Xl) ...... (bp(xl)
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Formal Definition

e General Regression problem: Determine a function f* such
that f*(x) is the best predictor for y, with respect to D:

f = argmin E(f, D)
fcF
Here, F denotes the class of functions over which the error
minimization is performed
o Parametrized Regression problem: Need to determine

parameters w for the function f(¢(x), w) which minimize our
error function E(f((b(x), w), D)

w* = argmin <E(f(¢(x), W), D)>

w
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Types of Regression

@ Classified based on the function class and error function
e Fis space of linear functions f(¢(x), w) = w'¢(x) + b =
Linear Regression
» Problem is then to determine w* such that,

w" = argmin E(w, D) (4)

w
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Types of Regression (contd.)

o Ridge Regression: A shrinkage parameter (regularization
parameter) is added in the error function to reduce discrepancies
due to variance

o Logistic Regression: Models conditional probability of
dependent variable given independent variables and is extensively
used in classification tasks

@ Lasso regression, Stepwise regression and several others

L Ji 35 301619 /50



Least Square Solution

@ Form of E() should lead to accuracy and tractability

@ The squared loss is a commonly used error/loss function. It is
the sum of squares of the differences between the actual value
and the predicted value

m

E(£D) = (flx) — y))’ (6)

=1

@ The least square solution for linear regression is obtained as

w* = argmm Z Z wipi( X)) )0)2) (7)
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@ The minimum value of the squared loss is zero

@ If zero were attained at w*, we would have ....................
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@ The minimum value of the squared loss is zero

o If zero were attained at w*, we would have Vu, qﬁT(xu)w* = Yu,
or equivalently ¢w* =y, where

1(x) o @p(x)
O10m) o Dplom)
and

N
y=|..
Ym
@ It has a solution if y is in the column space (the subspace of R”

formed by the column vectors) of ¢
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@ The minimum value of the squared loss is zero

@ If zero were NOT attainable at w*, what can be done?
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Geometric Interpretation of Least Square Solution

@ Let y* be a solution in the column space of ¢

@ The least squares solution is such that the distance between y*
and y is minimized

@ Therefore............
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Geometric Interpretation of Least Square Solution

@ Let y* be a solution in the column space of ¢

@ The least squares solution is such that the distance between y*
and y is minimized

@ Therefore, the line joining y* to y should be orthogonal to the
column space

pw =y* (8)
(y—y)T¢=0 (9)
) o= (y)"e (10)

L i35 301635 150



(ow)Top =yT¢ (11)

wroTo =yTo (12)
oTow = ¢Ty (13)
w=(¢T¢) "y (14)

@ Here ¢'¢ is invertible only if ¢ has full column rank
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Theorem : ¢'¢ is invertible if and only if ¢ is full column rank
Proof :

Given that ¢ has full column rank and hence columns are linearly
independent, we have that px =0=x=0

Assume on the contrary that ¢"¢ is non invertible. Then 3x # 0
such that ¢7¢x = 0

= xTpTopx =0
= (¢%)Tox = 0
= ¢px=0

This is a contradiction. Hence ¢’ is invertible if ¢ is full column

rank

If ¢7¢ is invertible then ¢x = 0 implies (¢ ¢x) = 0, which in turn
implies x = 0, This implies ¢ has full column rank if ¢"¢ is

invertible. Hence, theorem proved
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Figure: Least square solution y* is the orthogonal projection of y onto

column space of ¢



What is Next?

@ Some more questions on the Least Square Linear Regression
Model

@ More generally: How to minimize a function?

Level Curves and Surfaces
Gradient Vector
Directional Derivative
Hyperplane

Tangential Hyperplane

vV vV VvV VvV VY

@ Gradient Descent Algorithm
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