Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 4 - Linear Regression - Probabilistic
Interpretation and Regularization

Recap: Linear Regression is not Naively Linear

- Need to determine \mathbf{w} for the linear function $f(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{n} w_i \phi_i(\mathbf{x_j}) = \mathbf{\Phi} \mathbf{w}$ which minimizes our error function $E(f(\mathbf{x}, \mathbf{w}), \mathcal{D})$
- Owing to basis function ϕ , "Linear Regression" is *linear* in **w** but NOT in **x** (which could be arbitrarily non-linear)!

$$\Phi = \begin{bmatrix}
\phi_{1}(x_{1}) & \phi_{2}(x_{1}) & \dots & \phi_{p}(x_{1}) \\
\vdots & & & \\
\phi_{1}(x_{m}) & \phi_{2}(x_{m}) & \dots & \phi_{n}(x_{m})
\end{bmatrix} (1)$$

$$\xi_{0}! & \phi_{1}(x) = \alpha_{0} & \phi_{2}(x) = x - - \Rightarrow f(x) = poly & of \\
\phi_{1}(x, x_{1}) = \alpha_{0} & \phi_{10}(x_{1}^{-1}x) = x_{1}^{-1} & \phi_{01}(x_{1}^{-1}x) = x_{2}^{-1} \\
\phi_{11}(x_{1}, x_{2}) = x_{1}^{-1}x_{2} - \cdots & \phi_{pq}(x_{1}, x_{2}) = x_{1}^{-1}x_{2}^{-1}$$

examples: Radial basis fins, fourier, wavelets formulae

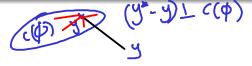
Recap: Linear Regression is not Naively Linear

- Need to determine **w** for the linear function $f(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{n} w_i \phi_i(\mathbf{x_j}) = \mathbf{\Phi} \mathbf{w}$ which minimizes our error function $E(f(\mathbf{x}, \mathbf{w}), \mathcal{D})$
- Owing to basis function ϕ , "Linear Regression" is *linear* in **w** but NOT in **x** (which could be arbitrarily non-linear)!

$$\frac{\text{degs} = \text{rn}}{\text{dechares}} = \begin{bmatrix} \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_p(\mathbf{x}_1) \\ \vdots & & & \\ \phi_1(\mathbf{x}_m) & \phi_2(\mathbf{x}_m) & \dots & \phi_n(\mathbf{x}_m) \end{bmatrix}$$
• Least Squares error and corresponding estimates:
$$E^* = \min_{\mathbf{w}} E(\mathbf{w}, \mathcal{D}) = \min_{\mathbf{w}} \left(\mathbf{w}^\mathsf{T} \mathbf{\Phi}^\mathsf{T} \mathbf{\Phi} \mathbf{w} - 2 \mathbf{y}^\mathsf{T} \mathbf{\Phi} \mathbf{w} + \mathbf{y}^\mathsf{T} \mathbf{y} \right)$$
(2)

$$\mathbf{w}^* = \operatorname*{arg\,min}_{\mathbf{w}} \mathbf{E}(\mathbf{w}, \mathcal{D}) = \operatorname*{arg\,min}_{\mathbf{w}} \left\{ \sum_{j=1}^m \left(\sum_{i \equiv 1}^n \mathbf{w}_i \phi_i(\mathbf{x}_j) - \mathbf{y}_i \mathbf{v}_i \mathbf{v}_i \right)^2 \right\}$$

Recap: Geometric Interpretation of Least Square Solution



- Let \mathbf{y}^* be a solution in the column space of Φ
- The least squares solution is such that the distance between
 y* and y is minimized
- Therefore, the line joining y^* to y should be orthogonal to the column space of $\Phi \Rightarrow$

$$\mathbf{w} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{y} \tag{4}$$

• Here $\Phi^T\Phi$ is invertible only if Φ has full column rank

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
- 3 Alternative error fins Bayesian and Maximum Aposteriori Estimates, Regularization
- Mow to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

- Q: Why is Y not a determinishe of of
 - Linear Model: Y is a linear function of $\phi(x)$, subject to a random noise variable ε which we believe is 'mostly' bounded by some threshold $\underline{\sigma}$:

reasonably behave
$$Y = w^T \phi(x) + \varepsilon$$
 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

Motivation: $\mathcal{N}(\mu, \sigma^2)$, has maximum entropy among all

- real-valued distributions with a specified variance σ^2
- 3 σ rule: About 68% of values drawn from $\mathcal{N}(\mu, \sigma^2)$ are within one standard deviation σ away from the mean μ ; about 95% of the values lie within 2σ ; and about 99.7% are within 3σ .

$$H(p) = \int_{-p(v)}^{-p(v)} \log_{2}(p(v)) dv = E_{p}(-\log_{2}p(v))$$

Reality
$$y = \omega^T \phi(x) + b + \varepsilon$$

Generative model

$$\psi(x) = \underset{\omega}{\text{argmin}} \quad \mathcal{E}\left(\omega^T \phi(x) + b + \varepsilon\right)$$
13 more of a process of explaining the Data!

$$Q! \text{ is } f(x) = \omega^T \phi(x) + b = \widehat{f}(x) = \widehat{\omega}^T \widehat{\phi}(x)$$
Ans: Yes ω with $\widehat{\omega} = [\omega]$ b

(Rish b into $\widehat{\omega}$ b $\widehat{\omega}$ $\widehat{\omega}$

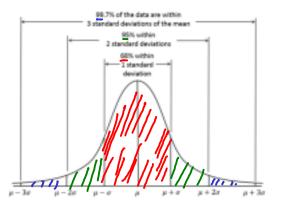
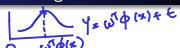


Figure 1: $3-\sigma$ rule: About 68% of values drawn from $\mathcal{N}(\mu,\sigma^2)$ are within one standard deviation σ away from the mean μ ; about 95% of the values lie within 2σ ; and about 99.7% are within 3σ . Source: https://en.wikipedia.org/wiki/Normal_distribution

Probabilistic Modeling of Linear Regression



• Linear Model: Y is a linear function of $\phi(\mathbf{x})$, subject to a random noise variable ε which we believe is 'mostly' around some threshold σ :

$$Y = \mathbf{w}^T \phi(\mathbf{x}) +$$
 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

• This allows for the Probabilistic model

Fivation:
$$F[Y(\mathbf{w}, \mathbf{x}_i)] = \mathbf{w}^T \phi(\mathbf{x}) + \mathbf{v}$$

which we believe is mostly about a point of \mathbf{v}
 $Y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$
 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

for the Probabilistic model

 $P(y_j | \mathbf{w}, \mathbf{x}_j, \sigma^2) = \mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}_j), \sigma^2)$
 $P(y | \mathbf{w}, \mathbf{x}_j, \sigma^2) = \prod_{j=1}^m P(y_j | \mathbf{w}, \mathbf{x}_j, \sigma^2)$

where \mathbf{w} is a point of \mathbf{v} is a point of \mathbf{v} .

• Another motivation: $E[Y(\mathbf{w}, \mathbf{x}_j)] = \mathbf{w}^T \phi(\mathbf{x}_j), \forall (\mathbf{y}) = \mathbf{\sigma}^2$

Probabilistic Modeling of Linear Regression

• Linear Model: Y is a linear function of $\phi(\mathbf{x})$, subject to a random noise variable ε which we believe is 'mostly' around some threshold σ :

$$Y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

This allows for the Probabilistic model

$$P(y_j|\mathbf{w}, \mathbf{x}_j, \sigma^2) = \mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}_j), \sigma^2)$$
$$P(y|\mathbf{w}, \mathbf{x}_j, \sigma^2) = \prod_{j=1}^m P(y_j|\mathbf{w}, \mathbf{x}_j, \sigma^2)$$

• Another motivation: $E[Y(\mathbf{w}, \mathbf{x}_j)] = \mathbf{w}^T \phi(\mathbf{x}_j)$ = $\mathbf{w}_0^T + \mathbf{w}_1^T \phi_1(\mathbf{x}_j) + ... + \mathbf{w}_n^T \phi_n(\mathbf{x}_j)$

Estimating w: Maximum Likelihood

- If $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and $y = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) + \epsilon$ where $\mathbf{w}, \ \phi(\mathbf{x}) \in \mathsf{R}^{\bullet h}$ then, given dataset \mathcal{D} , find the most likely \mathbf{w}_{ML}
- Recall: $\Pr(y_j|\mathbf{x}_j,\mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(y_j \mathbf{w}^T\phi(\mathbf{x}_j))^2}{2\sigma^2}\right) = N(\omega\phi(\mathbf{x}_j), \sigma^2)$
- From Probability of data to Likelihood of parameters:

Pr(D|w) = Pr(y|x,w) =
$$\int_{z_1}^{z_2} p(y; |x_j, \omega)$$
How likely $\int_{z_2}^{z_2} |y| = \int_{z_1}^{z_2} p(y; |x_j, \omega)$
13 the data, given $\int_{z_1}^{z_2} |y| = \int_{z_2}^{z_2} |y| = \int_{z_1}^{z_2} |y| = \int_{z_1}^{z_2} |y| = \int_{z_2}^{z_2} |y| = \int_{z_2}^{z_2$

Estimating w: Maximum Likelihood

- If $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and $y = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) + \epsilon$ where $\mathbf{w}, \ \phi(\mathbf{x}) \in \mathsf{R}^{\mathsf{m}}$ then, given dataset \mathcal{D} , find the most likely \mathbf{w}_{ML}
- Recall: $\Pr(y_j|\mathbf{x}_j,\mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(\frac{(y_j \mathbf{w}^T \phi(\mathbf{x}_j))^2}{2\sigma^2}\right)$
- From *Probability of data* to *Likelihood of parameters*:

$$\Pr(\mathcal{D}|\mathbf{w}) = \Pr(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \prod_{j=1}^{m} \Pr(y_j|\mathbf{x}_j, \mathbf{w}) = \prod_{j=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(\frac{(y_j - \mathbf{w}^T \phi(\mathbf{x}_j))^2}{2\sigma^2}\right)$$

Maximum Likelihood Estimate

$$\hat{\mathbf{w}}_{ML} = \underset{\mathbf{w}}{\operatorname{argmax}} \Pr(\mathcal{D}|\mathbf{w}) = \Pr(\mathbf{y}|\mathbf{x},\mathbf{w}) = L(\mathbf{w}|\mathcal{D})$$
to be

Optimization Trick

 Optimization Trick: Optimal point is invariant under monotonically increasing transformation (such as log)

$$\log \left(\frac{1}{12\pi \sigma^2} \right) e^{-\left(\frac{(\omega^2 \phi(x_3) - y_3)^2}{2\sigma^2} \right)}$$

$$= \log \left[\frac{1}{\sigma \sqrt{2\pi}} \right]^m e^{-\left(\frac{\omega^2 \phi(x_3) - y_3}{2\sigma^2} \right)}$$

$$= -m \log \left(\sigma \sqrt{2\pi} \right) - \sum_{i=1}^{m} \frac{(\omega^2 \phi(x_3) - y_3)^2}{2\sigma^2}$$

Optimization Trick

 Optimization Trick: Optimal point is invariant under monotonically increasing transformation (such as log)

•
$$\log L(\mathbf{w}|\mathcal{D}) = LL(\mathbf{w}|\mathcal{D}) = \left[LL \text{ is called log-likelihood} \right] - \frac{m}{2} ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{j=1}^{m} (\mathbf{w}^\mathsf{T} \phi(\mathbf{x}_j) - \mathbf{y}_j)^2$$

For a fixed σ^2
 $\mathbf{w}_{ML} = \operatorname{argmax} LL(\mathbf{w}|\mathbf{D}) = \operatorname{argmax} - \frac{1}{2\sigma^2} \sum_{j=1}^{m} - \mathbf{y}_j$

Optimization Trick

 Optimization Trick: Optimal point is invariant under monotonically increasing transformation (such as log)

•
$$\log L(\mathbf{w}|\mathcal{D}) = LL(\mathbf{w}|\mathcal{D}) = \frac{m}{2}ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{j=1}^{m}(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_j) - \mathbf{y}_j)^2$$

For a fixed σ^2
 $\mathbf{w}_{ML} = \underset{\mathbf{w}}{\operatorname{argmax}} LL(y_1...y_m|\mathbf{x}_1...\mathbf{x}_m,\mathbf{w},\sigma^2)$
 $= \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{m}(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_j) - y_j)^2 = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{m}(\boldsymbol{\omega}^{\mathsf{T}}\phi(\mathbf{x}_i) - y_i)^2$

• Note that this is same as the Least square solution!!

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization
- How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Redundant Φ and Overfitting

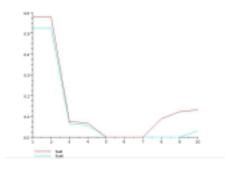


Figure 2: Root Mean Squared (RMS) errors on sample train and test datasets as a function of the degree *t* of the polynomial being fit

- Too many bends (t=9 onwards) in curve ≡ high values of some w_i's. Try plotting values of w_i's using applet at http://mste.illinois.edu/users/exner/java.f/leastsquares/#simulation
- Train and test errors differ significantly

```
X^0 *
         0.13252679175596802
X^1 *
         6.836159339696569
                                     W vector with fewer
X^2 *
         10.198794083500966
X^3 *
         8.298738913209064
X^4 *
         -3.766949862252123
X^5 *
         1.0274981119277349
X^6 *
         -0.17218031550131038
X^7 *
         0.017340835860554016
X^8 *
         -9.623065771393043E-4
                                    <del>||w|| < ||v||</del>
X^9 *
         2 2595409656184083E-5
X^0 *
         1.4218758581602278
                                      W Vector
X^1 *
         14.756472312089675
X^2 *
         -24 299789484296475
                                       more distracting
X^3 *
         20.63606795357865
                                         point
X^4 *
         -9.934453145766518
V \ \ \ \ \ \ \ \ \
         1) QO751Q1062///6612
```

Note: Test data cannol be used to decide that we are overfitting Use validation [hold-out Use NWII or some measure as proxy to test of deviation of data Wmi from an "expected prior" behaviour as a proxy to detect Test Mothation for 3 overFitting 15 Framing data is EXPENSIVE

Bayesian Linear Regression

- The Bayesian interpretation of probabilistic estimation is a logical extension that enables reasoning with uncertainty but in the light of some background belief
- Bayesian linear regression: A Bayesian alternative to Maximum Likelihood least squares regression
- Continue with Normally distributed errors
- Model the w using a prior distribution and use the posterior over w as the result
- Intuitive Prior:

Bayesian Linear Regression

- The Bayesian interpretation of probabilistic estimation is a logical extension that enables reasoning with uncertainty but in the light of some background belief
- Bayesian linear regression: A Bayesian alternative to Maximum Likelihood least squares regression
- Continue with Normally distributed errors
- Model the w using a prior distribution and use the posterior over w as the result
- Intuitive Prior: Components of w should not become too large!
- Next: Illustration of Bayesian Estimation on a simple Coin-tossing example