Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 4 - Linear Regression - Probabilistic
Interpretation and Regularization



Recap: Linear Regression is not Naively Linear
_ C fov ML, it (g meb Just
@ Need to determine w for the linear function line &Qq—mj
f(x,w) =3, wi¢i(xj) = ®w which minimizes our error
function E (f(x,w), D)
@ Owing to basis function ¢, “Linear Regression” is linear in w
but NOT in x (which could be arbitrarily non-linear)!
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Recap: Linear Regression is not Naively Linear

@ Need to determine w for the linear function
f(x,w) =3, wi¢i(xj) = ®w which minimizes our error
function E (f(x,w), D)

@ Owing to basis function ¢, “Linear Regression” is linear in w
but NOT in x (which could be arbitrarily non-linear)!

A efaS Al d1(x1)  @a(x1) oo ¢p(x1)
g \u"“‘ e O = (1)
N
cs‘;&\";\ \“ ) ¢1(Xm) ¢2(Xm) ...... ¢n(xm) ‘} ‘&

@ Least Squares error and corresponding estimates: 0‘{‘0 R\ ¢
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Recap: Geometric Interpretation of Least Square Solution

@ Let y* be a solution in the column space of ¢

@ The least squares solution is such that the distance between
y* and y is minimized

@ Therefore, the line joining y* to y should be orthogonal to the
column space of ¢ =

w=(®70) Ty (4)
@ Here ®7d is invertible only if ® has full column rank
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Building on questions on Least Squares Linear Regression

e . X4
@ Is there a probabilistic interpretation? i %“
e Gaussian Error, Maximum Likelihood Estimate ¢

@ Addressing overfitting _» p\\\c.*“o“
e Bayesian and Maximum Aposteriori Estimates, Regularization

© How to minimize the resultant and more complex error
functions?
o Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality



Probabilistic Modeling of Linear Regression
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@ Linear Model: Y is a linear function of ¢(x), subject to a
_3 .3 random noise variable € which we believe is ‘mostly’_bounded -é
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has maximum entropy among all

e Motivation: A (u,?),
2

real-valued distributions with a specified variance o

@ 3 — o rule: About 68% of values drawn from A(u,0?) are
within one standard deviation o away from the mean p; about
95% of the values lie within 20; and about 99.7% are within

30.
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Figure 1: 3 — o rule: About 68% of values drawn from N'(u,o?) are
within one standard deviation o away from the mean u; about 95% of
the values lie within 20; and about 99.7% are within 30. Source:
https://en.wikipedia.org/wiki/Normal_distribution



Probabilistic Modeling of Linear Regression
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random noise variable € which we believe is ‘mostly’ around

some threshold o )
. e
Y = wTo(x) + = gt
~ 2 v \g x
e~ N(0,07) 4(\'-0'0\\‘}‘ :%,_c.
@ This allows for the Probabilistic model o &‘\"
Pl Iw,x1,0%) = N(wTd(x)),02) % o &

m
P(V|W>XJ7U2) = HP()/j|W7xj702)

= 2
® Another motivation: E[Y(w, x;)] :U)\CPC'LID, \)(\I)’ s



Probabilistic Modeling of Linear Regression

@ Linear Model: Y is a linear function of ¢(x), subject to a
random noise variable € which we believe is ‘mostly’ around
some threshold o:

Y =wl¢(x)+e
e~ N(0,02%)

@ This allows for the Probabilistic model
P(yjlw,xj,0%) = N(w'¢(x;),0?)

m
P(V|W7XJ7U2) = HP()/j|W7xj702)
j=1

o Another motivation: E[Y(w,x;)] = w¢(x;)
=wg +w] G1(x)) + . + W, dn(x;)



Estimating w: Maximum Likelihood

o If e ~ N(0,02) and y = wT¢(x) + ¢ where w, ¢(x) € R®
then, given dataset D, find the most likely
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@ Recall: Pr(yj|x;,w) =




Estimating w: Maximum Likelihood

o If e ~ N(0,02) and y = wT¢(x) + € where w, ¢(x) € R™
then, given dataset D, find the most likely wi
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o From Probability of data to Likelihood of parameters:

Pr(D|w) = Pr(y[x, w) = oy
m r 'x'w_"’ 1 (Wi w d(x))
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@ Maximum Likelihood Estimate

@ Recall: Pr(yj|x;, w)
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Optimization Trick

@ Optimization Trick: Optimal point is invariant under
monotonically increasing transformation (such as log
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Optimization Trick

@ Optimization Trick: Optimal point is invariant under
monotonically increasing transformation (such as log )

o log L(w/D) = LiwiP) = [LLs ca\\ea log-likelinood )
—E/n (27wo?) Z w T o( Xj)

or a fixe U \ ﬂd
WL = @¥qraox LL (col.@ a'rsma::- a0 _53)7,
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Optimization Trick

@ Optimization Trick: Optimal point is invariant under
monotonically increasing transformation (such as log )
e log L(w|D) = LL(W\D)

m

2
—E/n (2mo?) z; wTé(x;) — ;)
For a fixed o2

why = argmax LL(y1...ym|X1 ... Xm, W, 02)
w

= argmin i (ngzb(xj) vj)? = Q% o) Z ((,)«-(P[g(‘) —5)
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@ Note that this is same as the Least square solution!!



Building on questions on Least Squares Linear Regression

@ Is there a probabilistic interpretation?
e Gaussian Error, Maximum Likelihood Estimate

@ Addressing overfitting
e Bayesian and Maximum Aposteriori Estimates, Regularization

© How to minimize the resultant and more complex error
functions?
o Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality



Redundant ® and Overfitting

Figure 2: Root Mean Squared (RMS) errors on sample train and
datasets as a function of the degree t of the polynomial being fit

@ Too many bends (t=9 onwards) in curve = high values of
/ - ’ .
some w;s. Try plotting values of w;'s using applet at
http://mste.illinois.edu/users/exner/java.f/leastsquares/#simulation

@ Train and test errors differ significantly
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Bayesian Linear Regression

@ The Bayesian interpretation of probabilistic estimation is a
logical extension that enables reasoning with uncertainty but
in the light of some background belief

o Bayesian linear regression: A Bayesian alternative to
Maximum Likelihood least squares regression

o Continue with Normally distributed errors

@ Model the w using a prior distribution and use the posterior
over w as the result

@ Intuitive Prior:



Bayesian Linear Regression

@ The Bayesian interpretation of probabilistic estimation is a
logical extension that enables reasoning with uncertainty but
in the light of some background belief

o Bayesian linear regression: A Bayesian alternative to
Maximum Likelihood least squares regression

o Continue with Normally distributed errors

@ Model the w using a prior distribution and use the posterior
over w as the result

@ Intuitive Prior: Components of w should not become too
large!

@ Next: lllustration of Bayesian Estimation on a simple
Coin-tossing example



