Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 6 - Linear Regression - Bayesian Inference
and Regularization



Building on questions on Least Squares Linear Regression

@ Is there a probabilistic interpretation?
e Gaussian Error, Maximum Likelihood Estimate

@ Addressing overfitting
e Bayesian and Maximum Aposteriori Estimates, Regularization

© How to minimize the resultant and more complex error
functions?
o Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality



Recap: Bayesian Inference with Coin Tossing

Let D | H follow a distribution Ber(p) (p is probability of heads)
and p follow a distribution Beta(p; o, 3) ~ %ﬁ,
© The Maximum Likelihood Estimate:
p = argmax ”Chph(l — p)”_h =
p
@ The Posterior Distribution: fner< P"""(’(' ’9
Pr(p| D) = Beta(p;a«+ h,5+ n— h)
© The Maximum a-Posterior (MAP) Estimate: The mode of the
posterior distribution
p = argmax Pr(H | D) = argmaxPr(p | D)
H P
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Intuition for Bayesian Linear Regression

The Bayesian interpretation of probabilistic estimation is a

logical extension that enables reasoning with uncertamty but

in the light of some background belief “‘3‘
Bayesian linear regression: A Bayesian alternative to \"
Maximum Likelihood least squares regression

Continue with Normally distributed errors

Model the w using a prior distribution and use the posterior
over w as the result

@ Intuitive Prior: Components of w should not become tog
large! 4 @ W= a-fs'ff\ln “%“’ f“.,,
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Prior Distribution for w for Linear Regression

y=wlp(x)+e
e~ N(0,02%)

@ We saw that when we try to maximize log-likelihood we end
up with Wy g = (7)) 10Ty
@ We can use a Prior distribution on w to avoid over—ﬁttiqrf

bsente

Each component w; is approximately bounded within j:73;. A
is also called the precision of the Gaussian __Jn‘_ \,\c-rco-’",‘j A
@ Q1: How do deal with Bayesian Estimation for Gaussian

distribution? p(w:| o) 7



Conjugate Prior for (univariate) Gaussian

o We will temporarily generalize the discussion with x taking
the place of € and p taking the place of w;



Conjugate Prior for (univariate) Gaussian

o We will temporarily generalize the discussion with x taking
the place of € and p taking the place of w;
o Let Pr(X) ~ N (u,0?) and let the data D = xy..
m m
° LmE=% ZX/ and o3y f = ,,%Z — ptme)?
i=1 i=1
@ Suppose you are told that the conjugate prior for the
(univariate) normally distributed random variable X in the
case that ¢ is not a random variable is
Pr(u) = N(uo,ao) Then the posterior is?



Conjugate Prior for (univariate) Gaussian

o We will temporarily generalize the discussion with x taking
the place of € and p taking the place of w;
o Let Pr(X) ~ N (u,0?) and let the data D = xy..
m

m
@ UMLE = 717 ZX,' and 0',2\/,“:— = nl‘rz ,UMLE
i=1 i=1
@ Suppose you are told that the conjugate prior for the
(univariate) normally distributed random variable X in the
case that 2 is not a random variable is
Pr(p) = N (o, 03). Then the posterior is?

o Answer: Pr(u|x1...xm) = N(im, 02,) such that jim, = ...... and

o Helpful tip: Product of Gaussians is always a Gaussian
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Detailed derivation

,/27ra(2) 208 "
L 22) 1 —(xi — p)? o"ﬁe}‘r
Pr(xi|p; 0%) = Wexp 23 L s
m -1 )
Pr(D|u) = ( 2;02> exp (7 > (xi = ) ‘K‘*y.’ Z\
i=1 &
Pr(p|D) o Pr(D|u) Pr(p) = ¥ o

exp (% S ;U’;‘°)2> — exp (or (1~ 10)?)
My leap of Jorh: Pu(mpte. )= N (b, m)




Detailed derivation (contd.)

Our reference equality:

exp <2 2 Z 1)’ M2—ZLO)> = exp (%(M - um)2>,
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Detailed derivation (contd.)

Our reference equality:

-1 ¢ 2 (1 —po)? -1 2
exp <@ i_l(Xi — ) = o ) TP E(M — pm) ),
Matching coefficients of 2, we get
2 2
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Detailed derivation (contd.)

Our reference equality:

2 f— o)\ _ -1 2
exp <2 22 Té) = exp (E(M_Mm) >
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Detailed derivation (contd.)

Our reference equality:

2 I MO) o —1 2
exp <2 22 TS) = exp (E(M_Mm) >

Matching coefﬁuents of u?, we get
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Detailed derivation (contd.)

Our reference equality:

exp <2 2 Z o MZ—ZLO)> exp (é(ﬂ - Nm)2>'
Matching coefﬁuents of u?, we get 2 2
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Detailed derivation (contd.)

Our reference equality:
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exp <2 22 Té) = exp (E(M_Mm) >

Matching coefﬁuents of u?, we get

2 2 1 1 m
e mm oy Ly
202, 2(02 ag) 0-r2n O.S o2

Matching coefficients of u, we get
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Summary: Conjugate Prior for (univariate) Gaussian

o Let Pr(X) ~ N(u,0?) and let the data D = x;..

m m
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@ Suppose you are told that the conjugate prior for the
(univariate) normally distributed random variable X in the
case that o2 is not a random variable is
Pr(p) = N(uo,03). Then the posterior is?

o Answer: Pr(u|x1...xm) = N (im, 02, such that



Summary: Conjugate Prior for (univariate) Gaussian

o Let Pr(X) ~ N(u,0?) and let the data D = x;..

m m
_ 1 2 _ 1
® UMLE = % E iand oy p = = E ,U«I\/ILE

@ Suppose you are told that the conjugate prior for the
(univariate) normally distributed random variable X in the
case that o2 is not a random variable is
Pr(p) = N(uo,03). Then the posterior is?

o Answer: Pr(u|x1...xm) = N (im, 02, such that
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Multivariate Normal Distribution and MLE estimate

‘3
© The multivariate Gaussian (Normal) Distribution is: (’1- eR
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Summary for MAP estimation with Normal Distribution

5 @ Summary: With u ~ N (uo, %) and x ~ N (u,0?)
~ L _m. 1

_5 02, o2 o}
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such that p(x|D) ~ N (tm,om?). Here m/o? is due to noise in
observation while 1/03 is due to uncertainity in u

@ For the Bayesian setting for the multivariate case with fixed X
X~ N_(.U_LX) e N(Hm %0) & p(x[D) ~ N (ptm: Zm)
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Summary for MAP estimation with Normal Distribution

1 m+ 1
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such that p(x|D) ~ N (tm,om?). Here m/o? is due to noise in
observation while 1/03 is due to uncertainity in u

@ For the Bayesian setting for the multivariate case with fixed X
X~ N(N? Z), n~ N(u“Ov z0) & p(X‘D) ~ N(:u'm Zm)

st=m gt
z;wlﬂm = mzilﬁm/e + Zo_l,u

@ We now conclude our discussion on Bayesian Linear Regression..






Prior Distribution for w for Linear Regression

y=wTo(x)+¢
e ~ N(0,02)

@ We saw that when we try to maximize log-likelihood we end
up with Wy g = (¢70) 10Ty
@ We can use a Prior distribution on w to avoid over-fitting
w; ~ N (0, '}K)
..Each component w; is approximately bounded within :l:%.
A is also called the precision of the Gaussian

@ Q1: How do deal with Bayesian Estimation for Gaussian
distribution?

@ Q2: Then what is the (collective) prior distribution of the
n-dimensional vector w?



Multivariate Normal Distribution and MAP estimate

Qecol): W = W™, 2) = 1 o o3 (R2TE)

'lﬁ‘i“ -\ 2 )

Q If w; ~ N(0,%) then w ~ N(0, 3/) where / is an nx n
identity matrix

@ = That is, I/v haska m2ultivariate Gaussian dilstribution
Pr(w) = @5’6 21wz with g = 0. X = 5!
© We will specifically consider Bayesian Estimation for
multivariate Gaussian (Normal) Distribution on w:
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