Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 6 - Linear Regression - Bayesian Inference
and Regularization

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization
- How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Recap: Bayesian Inference with Coin Tossing

Let $\mathcal{D} \mid H$ follow a distribution Ber(p) (p is probability of heads) and p follow a distribution $Beta(p; \alpha, \beta) \sim \frac{p^{(\alpha-1)}(1-p)^{(\beta-1)}}{B(\alpha, \beta)}$,

- The Maximum Likelihood Estimate:
 - $\hat{p} = \operatorname{argmax} {^{n}C_{h}p^{h}(1-p)^{n-h}} = \frac{h}{\pi}$
- 2 The Posterior Distribution: (Pera (a.) $Pr(p \mid \mathcal{D}) = Beta(p; \alpha + h, \beta + n - h)$
- The Maximum a-Posterior (MAP) Estimate: The mode of the posterior distribution

$$\begin{split} \tilde{p} &= \operatorname*{argmax} \Pr(H \mid \mathcal{D}) = \operatorname*{argmax} \Pr(p \mid \mathcal{D}) \\ &= \operatorname*{argmax} Beta(p; \alpha + h, \beta + n - h) = \frac{\alpha + h - 1}{\alpha + \beta + n - 2} \\ &= \underbrace{\text{F}}_{\text{besterned}} \left(\text{P} \right) * \underbrace{\text{F}}_{\text{Bayes}} \text{Beta} \left(\text{P}; \alpha + h, \beta + n - h \right) = \underbrace{\text{A+h}}_{\text{C} + \beta + n} \\ &= \underbrace{\text{Bayes}}_{\text{Bayes}} \text{Estimate} \end{split}$$

Intuition for Bayesian Linear Regression

- The Bayesian interpretation of probabilistic estimation is a logical extension that enables reasoning with uncertainty but in the light of some background belief
- Bayesian linear regression: A Bayesian alternative to from Maximum Likelihood least squares regression
- Continue with Normally distributed errors
- Model the w using a prior distribution and use the posterior over w as the result

Prior Distribution for w for Linear Regression

$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

- We saw that when we try to maximize log-likelihood we end up with $\hat{\mathbf{w}}_{MLE} = (\Phi^T \Phi)^{-1} \Phi^T y$
- We can use a Prior distribution on w to avoid over-fitting

$$w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$$
 in absence of \mathcal{D}_i approximately bounded within $\pm \frac{3}{4}$. λ

Each component w_i is approximately bounded within $\pm \frac{3}{\sqrt{\lambda}}$. λ is also called the precision of the Gaussian

• Q1: How do deal with Bayesian Estimation for Gaussian distribution? p(w: 12) ?

Conjugate Prior for (univariate) Gaussian

• We will temporarily generalize the discussion with x taking the place of ε and μ taking the place of w_i

Conjugate Prior for (univariate) Gaussian

- We will temporarily generalize the discussion with x taking the place of ε and μ taking the place of w_i
- Let $\Pr(X) \sim \mathcal{N}(\mu, \sigma^2)$ and let the data $\mathcal{D} = x_1...x_m$

•
$$\mu_{MLE} = \frac{1}{m} \sum_{i=1}^{m} x_i$$
 and $\sigma_{MLE}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{MLE})^2$

• Suppose you are told that the conjugate prior for the (univariate) normally distributed random variable X in the case that σ^2 is not a random variable is $\Pr(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$. Then the **posterior** is?

Conjugate Prior for (univariate) Gaussian

- We will temporarily generalize the discussion with x taking the place of ε and μ taking the place of w_i
- Let $\Pr(X) \sim \mathcal{N}(\mu, \sigma^2)$ and let the data $\mathcal{D} = x_1...x_m$

•
$$\mu_{MLE} = \frac{1}{m} \sum_{i=1}^{m} x_i$$
 and $\sigma_{MLE}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{MLE})^2$

- Suppose you are told that the conjugate prior for the (univariate) normally distributed random variable X in the case that σ^2 is not a random variable is $\Pr(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$. Then the **posterior** is?
- Answer: $\Pr(\mu|x_1...x_m) = \mathcal{N}(\mu_m, \sigma_m^2)$ such that $\mu_m =$ and $\frac{1}{\sigma_m^2} =$
- Helpful tip: Product of Gaussians is always a Gaussian

$$P_{i}(M) = \sqrt{2\pi\sigma_{0}^{2}} \exp\left(-\frac{(M-M_{0})^{2}}{2\sigma_{0}^{2}}\right)$$

$$P_{i}(x_{i}|M) = \sqrt{2\pi\sigma_{0}^{2}} \exp\left(-\frac{(x_{i}-M)^{2}}{2\sigma^{2}}\right)$$

$$P_{i}(x_{i}...x_{m}|M) = \sqrt{2\pi\sigma_{0}^{2}} \exp\left(-\frac{(x_{i}-M)^{2}}{2\sigma^{2}}\right)$$

$$= \sqrt{2\pi\sigma_{0}^{2}} \exp\left(-\frac{(x_{i}-M)^{2}}{2\sigma^{2}}\right)$$

$$= \exp\left(-\frac{$$

Detailed derivation

$$\Pr(\mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left(\frac{-(\mu - \mu_0)^2}{2\sigma_0^2}\right)$$

$$\Pr(x_i|\mu;\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x_i - \mu)^2}{2\sigma^2}\right)$$

$$\Pr(\mathcal{D}|\mu) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^m \exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m (x_i - \mu)^2\right)$$

$$\frac{\Pr(\mu|\mathcal{D}) \propto \Pr(\mathcal{D}|\mu) \Pr(\mu)}{\sqrt{2\pi\sigma^2}} = \exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m (x_i - \mu)^2 - \frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right) \propto \exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m (x_i - \mu)^2 - \frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right)$$

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m (x_i - \mu)^2 - \frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right) = \exp\left(\frac{-1}{2\sigma_m^2}(\mu - \mu_m)^2\right)$$
My leap of forth: $\Pr(M|x_i - x_i) = N(M_m, \sigma_m)$

Our reference equality:

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^{m}(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$
Matching coefficients of μ^2 , we get
$$-\frac{M^2}{2\sigma_m^2}=-\frac{m_M^2}{2\sigma^2}-\frac{M^2}{2\sigma_0^2}\Rightarrow\frac{1}{\sigma_m^2}=\frac{m}{\sigma^2}+\frac{1}{\sigma_0^2}$$
Recession grows as data observed increass.

Our reference equality:

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$

Matching coefficients of μ^2 , we get

$$\frac{-\mu^2}{2\sigma_m^2} = \frac{-\mu^2}{2} \left(\frac{m}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \Rightarrow$$

Our reference equality:

Our reference equality:
$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$
 Matching coefficients of μ^2 , we get
$$\frac{-\mu^2}{2\sigma_m^2}=\frac{-\mu^2}{2}(\frac{m}{\sigma^2}+\frac{1}{\sigma_0^2})\Rightarrow\frac{1}{\sigma_m^2}=\frac{1}{\sigma_0^2}+\frac{m}{\sigma^2}$$
 Matching coefficients of μ , we get
$$-\frac{1}{2\sigma_0^2}\left(\frac{m}{\sigma^2}+\frac{1}{\sigma_0^2}\right)=\frac{1}{2\sigma_0^2}+\frac{m}{\sigma^2}$$
 Matching coefficients of μ , we get
$$-\frac{1}{2\sigma_0^2}\left(\frac{m}{\sigma^2}+\frac{1}{\sigma_0^2}\right)=\frac{1}{2\sigma_0^2}+\frac{m}{\sigma^2}$$

Our reference equality:

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$

Matching coefficients of
$$\mu^2$$
, we get
$$\frac{-\mu^2}{2\sigma_m^2} = \frac{-\mu^2}{2} \left(\frac{m}{\sigma^2} + \frac{1}{\sigma_0^2}\right) \Rightarrow \frac{1}{\sigma_m^2} = \frac{1}{\sigma_0^2} + \frac{m}{\sigma^2}$$

Matching coefficients of μ , we get

$$\frac{2\mu\mu_m}{2\sigma_m^2} = \mu\left(\frac{2\sum_{i=1}^m x_i}{2\sigma^2} + \frac{2\mu_0}{2\sigma_0^2}\right) \Rightarrow$$

Our reference equality:

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$

Matching coefficients of
$$\mu^2$$
, we get
$$\frac{-\mu^2}{2\sigma_m^2} = \frac{-\mu^2}{2} \left(\frac{m}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \Rightarrow \frac{1}{\sigma_m^2} = \frac{1}{\sigma_0^2} + \frac{m}{\sigma^2} \quad \left[\sigma_m^2 \times \text{KM} \left(\sigma_0^2, \sigma_1^2 \right) \right]$$

Matching coefficients of μ , we get

$$\frac{2\mu\mu_m}{2\sigma_m^2} = \mu\left(\frac{2\sum_{i=1}^m x_i}{2\sigma^2} + \frac{2\mu_0}{2\sigma_0^2}\right) \Rightarrow \mu_m = \sigma_m^2\left(\frac{\sum_{i=1}^m x_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}\right) \text{ or }$$

$$\mu_{m} = \sigma_{m}^{2} \left(\frac{m\hat{\mu}_{MI}}{\sigma^{2}} + \frac{\mu_{0}}{\sigma_{0}^{2}} \right) \Rightarrow \quad \mu_{m} = 0$$

Our reference equality:

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$

Matching coefficients of μ_1^2 , we get

$$\frac{-\mu^2}{2\sigma_m^2} = \frac{-\mu^2}{2} (\frac{m}{\sigma^2} + \frac{1}{\sigma_0^2}) \Rightarrow \frac{1}{\sigma_m^2} = \frac{1}{\sigma_0^2} + \frac{m}{\sigma^2}$$

Matching coefficients of μ , we get

$$\frac{2\mu\mu_m}{2\sigma_m^2} = \mu\left(\frac{2\sum_{i=1}^m x_i}{2\sigma^2} + \frac{2\mu_0}{2\sigma_0^2}\right) \Rightarrow \mu_m = \sigma_m^2\left(\frac{\sum_{i=1}^m x_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}\right) \text{ or }$$

$$\mu_m = \sigma_m^2\left(\frac{m\hat{\mu}_{ML}}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}\right) \Rightarrow \mu_m = \left(\frac{\sigma^2}{m\sigma_0^2 + \sigma^2}\mu_0\right) + \left(\frac{m\sigma_0^2}{m\sigma_0^2 + \sigma^2}\hat{\mu}_{ML}\right)$$

$$m\sigma_0^2 + \sigma^2 \qquad m\sigma_0^2 + \sigma^2 \qquad m\sigma_0$$

Summary: Conjugate Prior for (univariate) Gaussian

- Let $\Pr(X) \sim \mathcal{N}(\mu, \sigma^2)$ and let the data $\mathcal{D} = x_1...x_m$
- $\mu_{MLE} = \frac{1}{m} \sum_{i=1}^{m} x_i$ and $\sigma_{MLE}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i \mu_{MLE})^2$
- Suppose you are told that the conjugate prior for the (univariate) normally distributed random variable X in the case that σ^2 is not a random variable is $\Pr(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$. Then the **posterior** is?
- Answer: $\Pr(\mu|x_1...x_m) = \mathcal{N}(\mu_m, \sigma_m^2)$ such that

Summary: Conjugate Prior for (univariate) Gaussian

- Let $\Pr(X) \sim \mathcal{N}(\mu, \sigma^2)$ and let the data $\mathcal{D} = x_1...x_m$
- $\mu_{MLE} = \frac{1}{m} \sum_{i=1}^{m} x_i$ and $\sigma_{MLE}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i \mu_{MLE})^2$
- Suppose you are told that the conjugate prior for the (univariate) normally distributed random variable X in the case that σ^2 is not a random variable is $\Pr(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$. Then the **posterior** is?
- Answer: $\Pr(\mu|x_1...x_m) = \mathcal{N}(\mu_m,\sigma_m^2)$ such that

•
$$\mu_m = (\frac{\sigma^2}{m\sigma_0^2 + \sigma^2}\mu_0) + (\frac{m\sigma_0^2}{m\sigma_0^2 + \sigma^2}\hat{\mu}_{ML})$$

$$\bullet \ \frac{1}{\sigma_m^2} = \frac{1}{\sigma_0^2} + \frac{m}{\sigma^2}$$

Multivariate Normal Distribution and MLE estimate

1 The multivariate Gaussian (Normal) Distribution is: $(\mathbf{z} \in \mathbb{R}^n)$ $\mathcal{N}(\mathbf{x}; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}$ when $\Sigma \in \Re^{n \times n}$ is $R(x_1) = \int_{X_1}^{N(x_1, u_1, z_1)} N(x_1, u_2, z_2) dx_3 ... dx_n = N(x_1, u_2, z_1^2)$ positive-definite and $\mu \in \Re^n$ $\sum_{\mathbf{x}_{i}} \mathbf{x}_{i} \mathbf{x}_{m} \mathbf{x}_{i}^{\mathbf{x}_{i}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i} \sim \frac{1}{m} \sum_{i=1}^{m} \phi(\mathbf{x}_{i}) \text{ and }$ Weka workbench for ML: Visualization in $\Sigma_{MLE} \sim \frac{1}{m} \sum_{i} (\phi(\mathbf{x}_i) - \mu_{MLE}) (\phi(\mathbf{x}_i) - \mu_{MLE})^T$ i=1 = (xik - (Umze) k) (xij - (Umle)))

Summary for MAP estimation with Normal Distribution

• Summary: With $\mu \sim \mathcal{N}(\mu_0, \sigma^2_0)$ and $x \sim \mathcal{N}(\mu, \sigma^2)$

$$\frac{1}{\sigma_m^2} = \frac{m}{\sigma^2} + \frac{1}{\sigma_0^2}$$
$$\frac{\mu_m}{\sigma_m^2} = \frac{m}{\sigma^2} \hat{\mu}_{mle} + \frac{\mu_0}{\sigma_0^2}$$

such that $p(x|D) \sim \mathcal{N}(\mu_m, \sigma_m^2)$. Here m/σ^2 is due to noise in observation while $1/\sigma_0^2$ is due to uncertainity in μ

ullet For the Bayesian setting for the multivariate case with fixed Σ

The Bayesian setting for the multivariate case with fixed
$$\Sigma$$

$$\frac{\mathbf{x} \sim \mathcal{N}(\mu, \Sigma), \ \mu \sim \mathcal{N}(\mu_0, \Sigma_0) \& \ p(\mathbf{x}|D) \sim \mathcal{N}(\mu_m, \Sigma_m)}{\mathsf{Zer}^{\mathsf{min}}}$$

$$\mathsf{Zer}^{\mathsf{min}} \ \mathsf{MejR}^{\mathsf{n}} \ \mathsf{NejR}^{\mathsf{n}} \ \mathsf{MejR}^{\mathsf{n}} \ \mathsf{NejR}^{\mathsf{n}} \ \mathsf{MejR}^{\mathsf{n}} \ \mathsf{NejR}^{\mathsf{n}} \ \mathsf$$

Summary for MAP estimation with Normal Distribution

• Summary: With $\mu \sim \mathcal{N}(\mu_0, \sigma^2_0)$ and $x \sim \mathcal{N}(\mu, \sigma^2)$

$$\begin{split} \frac{1}{\sigma_m^2} &= \frac{m}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \frac{\mu_m}{\sigma_m^2} &= \frac{m}{\sigma^2} \hat{\mu}_{mle} + \frac{\mu_0}{\sigma_0^2} \end{split}$$

such that $p(x|D) \sim \mathcal{N}(\mu_m, \sigma_m^2)$. Here m/σ^2 is due to noise in observation while $1/\sigma_0^2$ is due to uncertainty in μ

• For the Bayesian setting for the multivariate case with fixed Σ $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma), \ \mu \sim \mathcal{N}(\mu_0, \Sigma_0) \& p(\mathbf{x}|D) \sim \mathcal{N}(\mu_m, \Sigma_m)$

$$\Sigma_{m}^{-1} = m\Sigma^{-1} + \Sigma_{0}^{-1}$$

$$\Sigma_{m}^{-1}\mu_{m} = m\Sigma^{-1}\hat{\mu}_{mle} + \Sigma_{0}^{-1}\mu$$

We now conclude our discussion on Bayesian Linear Regression..

$$W_{i} = \mathcal{N}(0, \frac{1}{\lambda})$$
 $[w_{i} ... w_{n}] = \overline{w} = \mathcal{N}(0, \frac{1}{\lambda}\Sigma)$
 $\int \int \int \int \int dz \, dz \, dz \, dz \, dz$
 $W_{i} \perp L w_{j} \quad (w_{i} \text{ is independent of } w_{j})$

(ox(w:, w) = 0

Prior Distribution for w for Linear Regression

$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

- We saw that when we try to maximize log-likelihood we end up with $\hat{\mathbf{w}}_{MLE} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$
- ullet We can use a Prior distribution on ullet to avoid over-fitting

$$w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$$

..Each component w_i is approximately bounded within $\pm \frac{3}{\sqrt{\lambda}}$. λ is also called the precision of the Gaussian

- Q1: How do deal with Bayesian Estimation for Gaussian distribution?
- Q2: Then what is the (collective) prior distribution of the n-dimensional vector w?

Multivariate Normal Distribution and MAP estimate

Recall:
$$W = N(M, \Xi) = \frac{1}{(2\pi|\Xi|)^{N/2}} e^{-\frac{1}{2}(\omega-M)^{T}\Xi^{-1}(\omega-M)}$$

$$Z^{-1} = \lambda Z, |\Sigma| = \frac{1}{\lambda^{n}}$$

- ① If $w_i \sim \mathcal{N}(0, \frac{1}{2})$ then $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \frac{1}{2}I)$ where I is an $n \times n$ identity matrix
- \bigcirc \Rightarrow That is, **w** has a multivariate Gaussian distribution $\Pr(\mathbf{w}) = \frac{1}{(\frac{2\pi}{2})^{\frac{\eta}{2}}} e^{-\frac{\lambda}{2} ||\mathbf{w}||_2^2} \text{ with } \mu_0 = \mathbf{0}. \ \Sigma_0 = \frac{1}{\lambda} I$
- We will specifically consider Bayesian Estimation for multivariate Gaussian (Normal) Distribution on w:

$$\frac{1}{(2\pi)^{\frac{9}{2}}(\frac{1}{\lambda})^{\frac{1}{2}}}e^{-\frac{\lambda}{2}\|w\|_{2}^{2}}$$
Substitut for $Z_{0} = \frac{1}{\lambda}T$

$$[E_{1}...E_{m}] \sim N(O_{1}\sigma^{2}T)$$
4 determine $P_{1}(\omega|D)$