Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 7 - Linear Regression - Bayesian Inference
and Regularization



Building on questions on Least Squares Linear Regression

@ Is there a probabilistic interpretation?
e Gaussian Error, Maximum Likelihood Estimate

@ Addressing overfitting
e Bayesian and Maximum Aposteriori Estimates, Regularization

© How to minimize the resultant and more complex error
functions?
o Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality



Prior Distribution over w for Linear Regression

y=wT¢(x)+e
e~ N(0,02)
y o WMo, =)
@ We saw that when we try to maximize log-likelihood we end
up with wyy g = (¢T¢)_1¢Ty
@ We can use a Prior distribution on w to avoid over-fitting
1 =
Mo=© & wi~NO3L, = (£
(that is, each component w; is approximately bounded within
j:737\ by the 3 — o rule)

e We want to find P(w|D) = N (ttm, X m)
Invoking the Bayes Estimation results from before:
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Prior Distribution over w for Linear Regression

y=w'¢(x)+e
e~ N(0,02)

@ We saw that when we try to maximize log-likelihood we end
up with wyy g = (¢T¢)_1¢Ty
@ We can use a Prior distribution on w to avoid over-fitting
w; ~ N (0, %)
(that is, each component w; is approximately bounded within
j:737\ by the 3 — o rule)

e We want to find P(w|D) = N (ttm, X m)
Invoking the Bayes Estimation results from before:
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Finding pu,, & X, for w

Setting X9 = %I and uo =0

Tolpim = ®Ty/0?
Y=+ oTd/0?
M +0Td/02) 1Ty
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or
fim = (Ao’ + &To) 1Ty
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MAP and Bayes Estimates

o Pr(w|D)=N(W]| ttm, Xm)
@ The MAP estimate or mode under the Gaussian posterior is
the mode of the posterior =
Wmap = argmax N (W | pm, Xm) = p
w

A0 2D Waae® WmLE
@ Similarly, the Bayes Estimate, or the expected value under

the Gaussian posterior is the mean =

WBayes = EPr(w\’D)[W] = EN(um,Zm)[w] = l_’L-m

@ Summarily:

HMAP = HBayes = Mm = ()\02/ + ¢T¢)71¢Ty
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From Bayesian Estimates to (Pure) Bayesian Prediction

Mos am}m%a nt
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Bayes Estimator | 0 = E,gp)E[0] p(x|08)= A ‘(D fst)o’?a
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where 6 is the parameter
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Predictive distribution for linear Regression

A . - . . c
@ Wyap helps avoid overfitting as it takes regularization into &
account
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@ But we miss the modeling of uncertainty when we consider
only Wuap P4 | %, QDmpe) = J\I(wmf (’) s >

e Eg: While pred|ct|ng diagnostic results on a new patient x,
along with the value y, we would also like to know the
uncertainty of the prediction Pr(y | x, D). Recall that -~ ?(&)\ ‘)
y=wl¢(x)+eande~N(0,0%2) T2 &ac*‘ﬂ

w )
0t S8Prly | . D) = Prly [ x, < 31,1 > . < Ko in )

b 2gd R

@.J‘T Xo P (8t w) — NJ¢(.o )

o<t & ' ‘({ ?(w\(z \f.>- - {%m 'fm>)0\"°
\I\I(“m zm)



Pure Bayesian Regression Summarized

@ By definition, regression is about finding
(VY [x<x,y1> .. <XmyYm>) = [\]01’ o ~-V

e By Bayes Rule 4 hence T"““" ded

by

Pr(y | x,D) = Pr(y | x, < x1,y1 > ... < Xm, ¥m
= / Pr(y]w; x) Pr(w | D)dw
~ N (62,02 4+ 6T ()T mo(x)

where
y=w'¢(x)+¢ and e ~ N(0,0?)
w ~ N(0,al) and w | D ~ N (pim, Lm)
fim = (Ao?l + ®TO) 1o Ty and Tt = M + &7 d/0?
Finally y ~ N (um(x). &7 (X)=mg(x))
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Regularized Least Squares Regression

@ The Bayes and MAP estimates for Linear Regression coincide

with Regularized Ridge Regression ﬁ?u)gc TT j
@ P¥ IS — R e = arg min || Ow — y|[§ + Ao?|wl3
Ok

Mo Intumon To discourage redundancy and/or stop coefficients
( of w from becoming too large in magnitude, add a penalty to
the error term used to estimate parameters of the model.
@ The general Penalized Regularized L.S Problem:

Wreg = arg min ||ow — Y3 + AQ(w)

&
R
e Qw) = |lw||3 = Ridge Regression Z \\4)., ‘\U \?
.\&S o Q(w) = ||w||; = Lasso
& Q(w) = ||w|[o = Support-based penalty “¢>0> "w“r
~, o Some Q(w) correspond to priors that can be expressed in W
N close form. Some give good working solutions. However, for en%

mathematical convenience, some norms are easier to handle




Regularized Least Squares Regression

Intuition: To discourage redundancy and/or stop coefficients
of w from becoming too large in magnitude, constrain the
error minimizing estimate using a penalty

The general Constrained Regularized L.S. Problem:

WReg = arg min ||¢W - Y||%
w

such that Q(w) < 6

=
Claim: For any Penalized formulation with a particular A,
there exists a corresponding Constrained formulation with a
corresponding ¢ e

o Q(w) = ||w||3 = Ridge Regression . We will  ladey se

o Q(w) = ||w||; = Lasso O mwoppiny ¥

o Q(w) = ||w||p = Support-based penalty "“‘J‘C' ﬂ‘j*‘ss“‘p

Proof of Equivalence: Requires tools of
Optimization/duality



Polynomial regression

o Consider a degree 3

, | —
‘ ' polynomial regression model
Dedugp T as shown in the figure
" : @ Each bend in the curve
corresponds to increase in

[[wl]

o o Eigen values of (& T® + \/)
‘ S are indicative of curvature.
0 W » 0 B 1w Increasing A reduces the

’ curvature ‘9
b1 <[22 =) e (#9477 ?']
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Do Closed-form solutions Always Exist?

@ Linear regression and Ridge regression both have closed-form
solutions
o For linear regression,

wh = (dTo) o7y
o For ridge regression,
wh=(d o+ Aoy
(for linear regression, A = 0)

@ What about optimizing the formulations
(constrained/penalized) of Lasso (L norm)? And
support-based penalty (Lp norm)?: Also requires tools of
Optimization /duality



Why is Lasso Interesting?
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Support Vector Regression
One more formulation before we look at Tools of
Optimization/duality



