Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 7 - Linear Regression - Bayesian Inference
and Regularization

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization
- How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Prior Distribution over w for Linear Regression

$$y = \mathbf{w}^{T} \phi(x) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma^{2})$$

- We saw that when we try to maximize log-likelihood we end up with $\hat{\mathbf{w}}_{MLE} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$
- We can use a Prior distribution on \mathbf{w} to avoid over-fitting $w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$

(that is, each component w_i is approximately bounded within $\pm \frac{3}{\sqrt{\lambda}}$ by the $3-\sigma$ rule)

• We want to find $P(\mathbf{w}|D) = \mathcal{N}(\mu_m, \Sigma_m)$ Invoking the Bayes Estimation results from before:

Prior Distribution over w for Linear Regression

$$y = \mathbf{w}^T \phi(x) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

- We saw that when we try to maximize log-likelihood we end up with $\hat{\mathbf{w}}_{MLE} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$
- We can use a Prior distribution on \mathbf{w} to avoid over-fitting $w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$

(that is, each component w_i is approximately bounded within $\pm \frac{3}{\sqrt{3}}$ by the $3 - \sigma$ rule)

• We want to find $P(\mathbf{w}|D) = \mathcal{N}(\mu_m, \Sigma_m)$ Invoking the Bayes Estimation results from before:

$$\boldsymbol{\Sigma}_m^{-1} \boldsymbol{\mu}_m = \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0 + \boldsymbol{\Phi}^T \mathbf{y} / \sigma^2$$

$$\boldsymbol{\Sigma}_m^{-1} = \boldsymbol{\Sigma}_0^{-1} + \frac{1}{\sigma^2} \boldsymbol{\Phi}^T \boldsymbol{\Phi}$$

Finding μ_m & Σ_m for **w**

Setting
$$\Sigma_0 = \frac{1}{\lambda} \emph{I}$$
 and $\mu_0 = \mathbf{0}$

$$\begin{split} \boldsymbol{\Sigma}_{m}^{-1} \boldsymbol{\mu}_{m} &= \boldsymbol{\Phi}^{T} \mathbf{y} / \sigma^{2} \\ \boldsymbol{\Sigma}_{m}^{-1} &= \lambda \boldsymbol{I} + \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} / \sigma^{2} \\ \boldsymbol{\mu}_{m} &= \frac{\left(\lambda \boldsymbol{I} + \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} / \sigma^{2}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{y}}{\sigma^{2}} \end{split}$$

or

$$\mu_m = (\lambda \sigma^2 I + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

MAP and Bayes Estimates

- $Pr(\mathbf{w} \mid \mathcal{D}) = \mathcal{N}(\mathbf{w} \mid \mu_m, \Sigma_m)$
- The MAP estimate or mode under the Gaussian posterior is the mode of the posterior ⇒

$$\hat{w}_{MAP} = \operatorname*{argmax}_{\mathbf{w}} \mathcal{N}(\mathbf{w} \mid \mu_m, \Sigma_m) = \mu_m$$

 Similarly, the Bayes Estimate, or the expected value under the Gaussian posterior is the mean ⇒

$$\hat{w}_{Bayes} = E_{\mathsf{Pr}(\mathbf{w}|\mathcal{D})}[\mathbf{w}] = E_{\mathcal{N}(\mu_m, \Sigma_m)}[\mathbf{w}] = \mu_m$$

Summarily:

$$\mu_{MAP} = \mu_{Bayes} = \mu_m = (\lambda \sigma^2 I + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

$$\Sigma_m^{-1} = \lambda I + \frac{\Phi^T \Phi}{\sigma^2}$$

From Bayesian Estimates to (Pure) Bayesian Prediction

	Point?	p(x D)
MLE	$\hat{ heta}_{MLE} = \operatorname{argmax}_{ heta} LL(D heta)$	$p(x \theta_{MLE})$
Bayes Estimator	$\hat{\theta}_B = E_{p(\theta D)}E[\theta]$	$p(x \theta_B)$
MAP	$\hat{ heta}_{MAP} = \operatorname{argmax}_{ heta} p(heta D)$	$p(x \theta_{MAP})$
Pure Bayesian		$p(\theta D) = \frac{p(D \theta)p(\theta)}{\int_{m} p(D \theta)p(\theta)d\theta}$
		$p(D \theta) = \prod_{i=1}^{n} p(x_i \theta)$
		$p(x D) = \int_{\theta} p(x \theta)p(\theta D)$

where θ is the parameter

Predictive distribution for linear Regression

- $\hat{\mathbf{w}}_{MAP}$ helps avoid overfitting as it takes regularization into account
- But we miss the modeling of uncertainty when we consider only $\hat{\mathbf{w}}_{MAP}$
- **Eg:** While predicting diagnostic results on a new patient x, along with the value y, we would also like to know the uncertainty of the prediction $\Pr(y \mid x, D)$. Recall that $y = \mathbf{w}^T \phi(x) + \varepsilon$ and $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

$$Pr(y \mid \mathbf{x}, \mathcal{D}) = Pr(y \mid \mathbf{x}, <\mathbf{x}_1, y_1 > ... <\mathbf{x}_m, y_m >)$$

Pure Bayesian Regression Summarized

- By definition, regression is about finding $(y \mid \mathbf{x}, <\mathbf{x}_1, y_1 > ... <\mathbf{x}_m, y_m >)$
- By Bayes Rule

$$Pr(y \mid \mathbf{x}, \mathcal{D}) = Pr(y \mid \mathbf{x}, <\mathbf{x}_1, y_1 > ... <\mathbf{x}_m, y_m)$$

$$= \int_{\mathbf{w}} Pr(y \mid \mathbf{w}; \mathbf{x}) Pr(\mathbf{w} \mid \mathcal{D}) d\mathbf{w}$$

$$\sim \mathcal{N}\left(\mu_m^T \phi(\mathbf{x}), \sigma^2 + \phi^T(\mathbf{x}) \Sigma_m \phi(\mathbf{x})\right)$$

where

where
$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon \text{ and } \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

$$\mathbf{w} \sim \mathcal{N}(0, \alpha I) \text{ and } \mathbf{w} \mid \mathcal{D} \sim \mathcal{N}(\mu_m, \Sigma_m)$$

$$\mu_m = (\lambda \sigma^2 I + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y} \text{ and } \Sigma_m^{-1} = \lambda I + \Phi^T \Phi / \sigma^2$$
 Finally $y \sim \mathcal{N}(\mu_m^T \phi(\mathbf{x}), \phi^T(\mathbf{x}) \Sigma_m \phi(\mathbf{x}))$

Penalized Regularized Least Squares Regression

 The Bayes and MAP estimates for Linear Regression coincide with Regularized Ridge Regression

$$\mathbf{w}_{\textit{Ridge}} = \mathop{\arg\min}_{\mathbf{w}} \ ||\Phi\mathbf{w} - \mathbf{y}||_2^2 + \lambda \sigma^2 ||\mathbf{w}||_2^2$$

- **Intuition:** To discourage redundancy and/or stop coefficients of **w** from becoming too large in magnitude, add a penalty to the error term used to estimate parameters of the model.
- The general Penalized Regularized L.S Problem:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\operatorname{arg \, min}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2 + \lambda \Omega(\mathbf{w})$$

- $\Omega(\mathbf{w}) = ||\mathbf{w}||_2^2 \Rightarrow \text{Ridge Regression}$
- $\Omega(\mathbf{w}) = ||\mathbf{w}||_1 \Rightarrow \mathsf{Lasso}$
- $\Omega(\mathbf{w}) = ||\mathbf{w}||_0 \Rightarrow$ Support-based penalty
- Some $\Omega(\mathbf{w})$ correspond to priors that can be expressed in close form. Some give good working solutions. However, for mathematical convenience, some norms are easier to handle

Constrained Regularized Least Squares Regression

- Intuition: To discourage redundancy and/or stop coefficients of w from becoming too large in magnitude, constrain the error minimizing estimate using a penalty
- The general Constrained Regularized L.S. Problem:

$$\mathbf{w}_{Reg} = \mathop{\mathrm{arg\;min}}_{\mathbf{w}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2$$
 such that $\Omega(\mathbf{w}) \leq \theta$

- Claim: For any Penalized formulation with a particular λ , there exists a corresponding Constrained formulation with a corresponding θ
 - $\Omega(\mathbf{w}) = ||\mathbf{w}||_2^2 \Rightarrow \mathsf{Ridge} \; \mathsf{Regression}$
 - $\Omega(\mathbf{w}) = ||\mathbf{w}||_1 \Rightarrow \mathsf{Lasso}$
 - $\Omega(\mathbf{w}) = ||\mathbf{w}||_0 \Rightarrow$ Support-based penalty
- Proof of Equivalence: Requires tools of Optimization/duality

Polynomial regression

- Consider a degree 3
 polynomial regression model
 as shown in the figure
- Each bend in the curve corresponds to increase in ||w||
- Eigen values of $(\Phi^T \Phi + \lambda I)$ are indicative of curvature. Increasing λ reduces the curvature

Do Closed-form solutions Always Exist?

- Linear regression and Ridge regression both have closed-form solutions
 - For linear regression,

$$w^* = (\Phi^\top \Phi)^{-1} \Phi^\top y$$

• For ridge regression,

$$w^* = (\Phi^\top \Phi + \lambda I)^{-1} \Phi^\top y$$

(for linear regression, $\lambda = 0$)

 What about optimizing the formulations (constrained/penalized) of Lasso (L₁ norm)? And support-based penalty (L₀ norm)?: Also requires tools of Optimization/duality

Why is Lasso Interesting?

Support Vector Regression

One more formulation before we look at Tools of Optimization/duality