Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 7 - Linear Regression - Bayesian Inference
and Regularization



Building on questions on Least Squares Linear Regression

@ s there a probabilistic interpretation?
o Gaussian Error, Maximum Likelihood Estimate

@ Addressing overfitting
o Bayesian and Maximum Aposteriori Estimates, Regularization

© How to minimize the resultant and more complex error
functions?
o Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality



Prior Distribution over w for Linear Regression

y=w'¢(x)+e
e~ N(0,02)

@ We saw that when we try to maximize log-likelihood we end
up with wyy g = (CDTCD)_ICDTy
@ We can use a Prior distribution on w to avoid over-fitting
w; ~ N (0, %)
(that is, each component w; is approximately bounded within

j:\%\ by the 3 — o rule)

e We want to find P(w|D) = N (tm, Xm)
Invoking the Bayes Estimation results from before:
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Finding pu,, & X, for w

Setting X9 = %I and uo =0

Tolpim = ®Ty/0?
Y=+ oTd/0?
M +0Td/02) 1Ty

o2

m

or
fim = (Ao’ + &To) 1Ty



MAP and Bayes Estimates

o Pr(w | D) = N(W | jtm Enm)
@ The MAP estimate or mode under the Gaussian posterior is
the mode of the posterior =

Wyap = argmax N (W | m, Xm) = fim
w

@ Similarly, the Bayes Estimate, or the expected value under
the Gaussian posterior is the mean =

WBayes = EPr(w\D)[W] = EN(um,Zm)[w] = HKm
@ Summarily:
HMAP = HBayes = Mm = ()‘02/ + ¢T¢)71¢Ty
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From Bayesian Estimates to (Pure) Bayesian Prediction

Point? p(x|D)
MLE GMLE = argmaxXy LL(D|(9) p(X’QMLE)
Bayes Estimator | g = Eygp)E[0] p(x|0g)
MAP Onmap = argmax, p(0|D) | p(x|Omap)
. D0)p(0
Pure Bayesian p(0|D) = M
p(D|0) = H p(xi|0)

p(x|D) = /9 p(x10)p (6]

where 6 is the parameter



Predictive distribution for linear Regression

@ Wpap helps avoid overfitting as it takes regularization into
account

@ But we miss the modeling of uncertainty when we consider
only Wpjap

o Eg: While predicting diagnostic results on a new patient x,
along with the value y, we would also like to know the
uncertainty of the prediction Pr(y | x, D). Recall that
y=w'¢(x)+¢eand e ~N(0,0?)

Pl’(y ’ X, D) = Pr(y | X, < X1,Y1 > oo < XmyYm >)



Pure Bayesian Regression Summarized

@ By definition, regression is about finding
(y | x, < x1,1 > oo < XmyYm >)
o By Bayes Rule

Pr(y | X7D) = Pr(.y | X, <X, Y1 > oo < Xmy Ym
= / Pr(y|w; x) Pr(w | D)dw

~ N (1h(x), 02 4 6T ()T mo(x)
where
y=w'¢(x)+e and e ~ N(0,0?)
w ~ N(0,al) and w | D ~ N (ttm, Xm)
pm = (A% +Td) 1o Ty and Xt = M + dTd /0>
Finally y ~ N(pnd(x), 6" (X)Eme(x))



Regularized Least Squares Regression

@ The Bayes and MAP estimates for Linear Regression coincide
with Regularized Ridge Regression

- 2 2 2
WRidge = arg min [|®w —y[|5 + Ao“[|wl[3
w
@ Intuition: To discourage redundancy and/or stop coefficients
of w from becoming too large in magnitude, add a penalty to

the error term used to estimate parameters of the model.
@ The general Penalized Regularized L.S Problem:

Wgeg = argmin ||dw — y||3 + AQ(w)
w

o Q(w) = ||w||3 = Ridge Regression
o Q(w) = ||w||; = Lasso
o Q(w) = ||w||op = Support-based penalty

@ Some Q(w) correspond to priors that can be expressed in
close form. Some give good working solutions. However, for
mathematical convenience, some norms are easier to handle



Regularized Least Squares Regression

Intuition: To discourage redundancy and/or stop coefficients
of w from becoming too large in magnitude, constrain the
error minimizing estimate using a penalty

The general Constrained Regularized L.S. Problem:

WReg = arg min ||¢W - Y||%
w

such that Q(w) < 6

Claim: For any Penalized formulation with a particular A,
there exists a corresponding Constrained formulation with a
corresponding ¢/

o Q(w) = ||w||3 = Ridge Regression

o Q(w) = ||w||; = Lasso

o Q(w) = ||w||o = Support-based penalty

Proof of Equivalence: Requires tools of
Optimization/duality



Polynomial regression

o Consider a degree 3
polynomial regression model
as shown in the figure
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@ Each bend in the curve
corresponds to increase in
[[wl]

o Eigen values of (& T® + \/)
are indicative of curvature.
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Do Closed-form solutions Always Exist?

@ Linear regression and Ridge regression both have closed-form
solutions
o For linear regression,

wh = (dTo) o7y
e For ridge regression,
wh=(dTo+ ) ToTy
(for linear regression, A = 0)

@ What about optimizing the formulations
(constrained/penalized) of Lasso (L3 norm)? And
support-based penalty (Lo norm)?: Also requires tools of
Optimization/duality



Why is Lasso Interesting?



Support Vector Regression
One more formulation before we look at Tools of
Optimization/duality



