Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 9 - Optimization Foundations Applied to
Regression Formulations



Building on questions on Least Squares Linear Regression

@ Is there a probabilistic interpretation?
e Gaussian Error, Maximum Likelihood Estimate

@ Addressing overfitting
e Bayesian and Maximum Aposteriori Estimates, Regularization,
Support Vector Regression
© How to minimize the resultant and more complex error
functions?

o Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality

kKT (a’ﬂAﬁioﬂ.S
G Dust of SVR-- kemc‘i
@i’ wy A‘GA\CQ— S \‘? Y‘;;:E:Yzfa"\j uﬂvt"b‘



SVR objective

@ 1-norm Error, and L, regularized:
o Minwbe.er 5 [wl*+C (& + &)
s.t. Vi,
Yi— WTT¢(X:') —b<e+& 'k Numkz'r aS: QmST'amt’ ( )
b+w'o(x;) —yi <e+¢&f, = Da exxamfles (Y
@ 2-norm Error, and L, regularized:
o Minwbe e 3 IIWl*+ CY,(62 +¢2)
s.t. Vi,
yi—wlo(x)—b<et+§,
b+wlo(x)—yi <e+&
e Here, the constraints &;, £ > 0 are not necessary



Need for Optimization so far

e Unconstrained (Penalized) Optimization:
WReg = argmin [|ow —y||3 + Q(w)
e Constrained Optimization 1:
Wreg = argmin ||dw — |3

such that Q(w) < 6
e Constrained Optimization 2 (t =1 or 2):

argmm = ||wH + CZ &+ &)

wb§,,£*

st Vi, yi—wlo(x))—b<e+&; b+wlo(x;)—yi <e+E&F
e Equivalence: \ (Penalized) = ¢ (Constrained)

@ Duality: Dual of Support Vector Regression
o



Solving Unconstrained Minimization Problem

@ Intuitively: Minimize by setting derivative (gradient) to 0 and
hoping to find closed form solution.

@ When is such a solution a global minimum?
@ For most optimization problems, finding closed form solutions
is difficult. Even for linear regression (for which closed form
solution exists), are there alternative methods?  (3¥ ¢} 50
e Eg: Consider, y = ¢w,where ¢ is a matrix with full column
rank, the least squares solution, w* = (®7®)"1dTy . Now,
imagine that ¢ is a very large matrix. with say, 100,000
columns and 1,000,000 rows. Computation of closed form
solution might be challenging.

@ How about iterative methods?
A3
W= oy AR



Foundations: Level curves and surfaces

@ A level curve of a function f(x) is defined as a curve along
which the value of the function remains unchanged while we
change the value of its argument x.

@ Formally we can define a level curve as :

Le(6) = {xif(x) = <} 1)

{>

where c is a constant.  <%% \)g‘




Foundations: Level curves and surfaces

@ Example of different level curves for a single function

Figure 1: 10 level curves for the function f(x1,x2) = x1€* (Figure 4.12
from https://www.cse.iitb.ac.in/~CS725/notes/classNotes/
Basics0fConvexOptimization.pdf)



Foundations: Directional Derivatives

@ Directional derivative: Rate at which the function changes at
a given point x in a given direction v

o The directional derivative of a function f in the direction of a
unit vector v at a point x can be defined as :

Dv(f,X)Z),i_fPO f(x+h\/l1)f(x) )
st [[v]l2=1 (3)




Foundations: Gradient Vector
ctawn: D (52)= VTV

@ The gradient vector of a function f at a point x is defined as:
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indicates maximum value of directional derivative at that point

@ Direction of gradient vector indicates direction of this 081_
maximal directional derivative at that point. —
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Foundations: Gradient Vector

@ The figure below illustrates the gradient vector for the same
level curves

Figure 2: The level curves along with the gradient vector at (2, 0). Note
that the gradient vector is perpenducular to the level curve x;e* = 2 at
(2,0)



Hyperplanes

@ A hyperplane in an n-dimensional Euclidean space is a flat,
n-1 dimensional subset of that space that divides the space
into two disjoint half-spaces.

@ Technically, a hyperplane is a set of points whose direction
w.r.t. a point q is orthogonal to a vector v:

‘X\l Hyq = {p ‘ (p—aq)Tv= 0} (5)
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o Tangential Hyperplane: Plane orthogonal to the gradient
vector at x*.

&) TH . = Hopy 2 - ii’\ (p-2) \7{(&):5‘}

<




Hyperplanes

@ A hyperplane in an n-dimensional Euclidean space is a flat,
n-1 dimensional subset of that space that divides the space
into two disjoint half-spaces.

@ Technically, a hyperplane is a set of points whose direction
w.r.t. a point q is orthogonal to a vector v:

Hoa={p | (- aTv =0 (5)

o Tangential Hyperplane: Plane orthogonal to the gradient
vector at x*.

THy = {p | (p— x*)TVF(x*) = 0} (6)



Foundations: Recall

3
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= argmin(w’ ®Tow — 2w gy +yTy + Ajw|]?) (8)
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Foundations: Gradient Vector

e Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

@ Thus, at the point of minimum of a differentiable minimization
objective (such as least squares for regression), ....
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Foundations: Necessary condition 1

o If Vf(w*) is defined & w* is local minimum/maximum, then
Vf(w*) =0 (A necessary condition) (Cite : Theorem
60) of cS725/notes/classNotes/Basics0fConvexOptimization.pdf
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Foundations: Necessary condition 1

o If Vf(w*) is defined & w* is local minimum/maximum, then
Vf(w*) =0 (A necessary condition) (Cite : Theorem
60) CS725/notes/classNotes/Basics0fConvexOptimization.pdf

@ Given that

f(w) =argmin(w’ dTow — 2w’ dTy —yTy + \||w||?) (9)

w

— Vf(w)=20"dw — 20Ty 4 2\w (10)

__,_\/‘_’_d
e We would have @\56?}75&"5 gt W
Vi(w?) =0 (11)
= 20To 4+ A)w 20Ty =0 (12)
= w=(0To + A1)ty (13)
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Foundations: Necessary Condition 2
) > Necessa AL o
e /s V-f(w*) positive definite ? 20
ie. ¥x #0, isxTVF(w*)x > 0? (A sufficient cz1 |t€§;1)fc? ©
local minimum)
(Note : Any positive definite matrix is also positive
semi-definite)
(Cite : Section 3.12 & 3.12.1)1
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Foundations: Necessary Condition 2

o Is V2f(w*) positive definite 7
ie. ¥x #0, is xT Vf(w*)x > 0? (A sufficient condition for
local minimum)
(Any positive definite matrix is also positive semi-definite)
(Cite : Section 3.12 & 3.12.1)2

V2 F(w*) = 207 +2) (14)

— x"Vf(w)x = 2xT(®Td +A)x (15)

- 2((¢+\/X/)x)T¢x (16)

(M%u &i‘;ﬁ %mﬁenzs ; H (0+ VA H =0 (17)

@ And with A =0, if ® has full column rank ?\\ =0 % Y
_ 12 @nﬂf Y% =0
dx =0 iff x=0 ]1
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Example of linearly correlated features

@ Example where ® doesn’'t have a full column rank,

X1 X12 xl2 xf’
X2 X22 X22 xg’
¢ = : (19)
Xn x,% x,% xg

@ This is the simplest form of linear correlation of features, and

it is not at all desirable.
o Effect of a nonzero \ with such ® is that



Example of linearly correlated features

@ Example where ® doesn’'t have a full column rank,

X1 X12 xl2 xf’
X2 X22 X22 xg’

b= : : ; (19)
Xn x,% x,% xg
@ This is the simplest form of linear correlation of features, and
it is not at all desirable.
@ Effect of a nonzero \ with such ® is that it tends to make the
Hessian more positive definite



Do Closed-form solutions Always Exist?

@ Linear regression and Ridge regression both have closed-form
solutions
o For linear regression,

wh = (dTo) o7y
o For ridge regression,
wh=(dTo+ ) ToTy
(for linear regression, A = 0)

@ What about optimizing the formulations
(constrained/penalized) of Lasso (L norm)? And
support-based penalty (Lp norm)?: Also requires tools of
Optimization /duality



