Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 9 - Optimization Foundations Applied to
Regression Formulations

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization, Support Vector Regression
- Mow to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

KKT Conditions

Dual of SVR. Kernels

Squivalence of penalized to
Constrained

SVR objective

- 1-norm Error, and L₂ regularized:
 - $\min_{\mathbf{w},b,\xi_i,\xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*)$ s.t. $\forall i$, $y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \leq \epsilon + \xi_i,$ $b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i \leq \epsilon + \xi_i^*,$ $\xi_i,\xi_i^* \geq 0$ Number of constraints $= 2 - \sharp \quad \text{examples (m)}$
- 2-norm Error, and L_2 regularized:
 - $\min_{\mathbf{w}, b, \xi_i, \xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i^2 + \xi_i^{*2})$ s.t. $\forall i$, $y_i - \mathbf{w}^{\top} \phi(x_i) - b \le \epsilon + \xi_i$, $b + \mathbf{w}^{\top} \phi(x_i) - y_i \le \epsilon + \xi_i^*$
 - Here, the constraints $\xi_i, \xi_i^* \geq 0$ are not necessary

Need for Optimization so far

Unconstrained (Penalized) Optimization:

$$\mathbf{w}_{Reg} = \underset{\mathbf{w}}{\text{arg min}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2 + \Omega(\mathbf{w})$$

Constrained Optimization 1:

$$\mathbf{w}_{Reg} = \mathop{\mathrm{arg\;min}}_{\mathbf{w}} \ ||\Phi \mathbf{w} - \mathbf{y}||_2^2$$
 such that $\Omega(\mathbf{w}) \leq \theta$

• Constrained Optimization 2 (t = 1 or 2):

$$\underset{\mathbf{w},b,\xi_{i},\xi_{i}^{*}}{\arg\min} \frac{1}{2} \left\| \mathbf{w} \right\|^{2} + C \sum_{i} (\xi_{i}^{t} + \xi_{i}^{*t})$$

s.t.
$$\forall i, y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \le \epsilon + \xi_i; b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i \le \epsilon + \xi_i^*$$

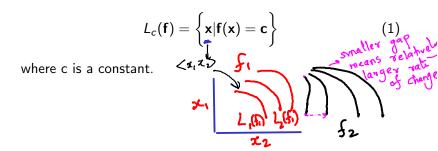
- Equivalence: λ (Penalized) $\equiv \theta$ (Constrained)
- Duality: Dual of Support Vector Regression

Solving Unconstrained Minimization Problem

- Intuitively: Minimize by setting derivative (gradient) to 0 and hoping to find closed form solution.
- When is such a solution a global minimum?
- For most optimization problems, finding closed form solutions is difficult. Even for linear regression (for which closed form solution exists), are there alternative methods?
 - Eg: Consider, $\mathbf{y} = \phi \mathbf{w}$,where ϕ is a matrix with full column rank, the least squares solution, $\mathbf{w}^* = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$. Now, imagine that ϕ is a very large matrix. with say, 100,000 columns and 1,000,000 rows. Computation of closed form solution might be challenging.
- How about iterative methods?

Foundations: Level curves and surfaces

- A level curve of a function f(x) is defined as a curve along which the value of the function remains unchanged while we change the value of its argument x.
- Formally we can define a level curve as :



Foundations: Level curves and surfaces

• Example of different level curves for a single function

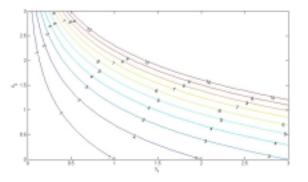


Figure 1: 10 level curves for the function $f(x_1, x_2) = x_1 e^{x_2}$ (Figure 4.12 from https://www.cse.iitb.ac.in/~CS725/notes/classNotes/BasicsOfConvexOptimization.pdf)

Foundations: Directional Derivatives

- Directional derivative: Rate at which the function changes at a given point x in a given direction v
- The directional derivative of a function f in the direction of a unit vector v at a point x can be defined as:

$$D_{\mathbf{v}}(f, \mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}$$
 (2)

$$s.t. ||\mathbf{v}||_2 = 1$$
 (3)

Foundations: Gradient Vector

claim:
$$\mathcal{D}_{V}(\xi,x) = V^{T} \nabla f(x)$$

• The gradient vector of a function f at a point \mathbf{x} is defined as:

$$\nabla f_{\mathbf{x}^*} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix} \epsilon \mathbb{R}^n$$

$$(4)$$

$$\|\nabla f_{\mathbf{x}}\|_2$$

- Magnitude (euclidean norm) of gradient vector at any point ? indicates maximum value of directional derivative at that point
- Direction of gradient vector indicates direction of this maximal directional derivative at that point.

Foundations: Gradient Vector

 The figure below illustrates the gradient vector for the same level curves

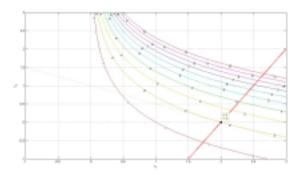


Figure 2: The level curves along with the gradient vector at (2, 0). Note that the gradient vector is perpenducular to the level curve $x_1e^{x_2} = 2$ at (2, 0)

Hyperplanes

- A hyperplane in an n-dimensional Euclidean space is a flat, n-1 dimensional subset of that space that divides the space into two disjoint half-spaces.
- Technically, a hyperplane is a set of points whose direction w.r.t. a point q is orthogonal to a vector v:

$$H_{\mathbf{v},\mathbf{q}} = \left\{ \mathbf{p} \middle| (\mathbf{p} - \mathbf{q})^{\mathsf{T}} \mathbf{v} = \mathbf{0} \right\}$$

$$\left\{ \mathbf{p} \middle| (\mathbf{p} - \mathbf{q})^{\mathsf{T}} \mathbf{v} = \mathbf{0} \right\}$$
such that $\mathbf{p}, \mathbf{q}, \mathbf{v} \in \mathbb{R}^n$

$$\left\{ \mathbf{p} \middle| (\mathbf{p} - \mathbf{q})^{\mathsf{T}} \mathbf{v} = \mathbf{0} \right\}$$
such that $\mathbf{p}, \mathbf{q}, \mathbf{v} \in \mathbb{R}^n$

Tangential Hyperplane: Plane orthogonal to the gradient vector at x*.

THz=
$$H_{\nabla f(x),x} = \{p \mid (p-x)^T \nabla f(x) = 0\}$$

Hyperplanes

- A hyperplane in an n-dimensional Euclidean space is a flat, n-1 dimensional subset of that space that divides the space into two disjoint half-spaces.
- Technically, a hyperplane is a set of points whose direction w.r.t. a point q is orthogonal to a vector v:

$$H_{\mathbf{v},\mathbf{q}} = \left\{ \mathbf{p} \mid (\mathbf{p} - \mathbf{q})^{\mathsf{T}} \mathbf{v} = \mathbf{0} \right\}$$
 (5)

 Tangential Hyperplane: Plane orthogonal to the gradient vector at x*.

$$TH_{\underline{\mathbf{x}}^*} = \left\{ \mathbf{p} \mid (\mathbf{p} - \mathbf{x}^*)^\mathsf{T} \nabla \mathbf{f}(\mathbf{x}^*) = \mathbf{0} \right\}$$
 (6)

Foundations: Recall

We recall that the problem was to find \mathbf{w} such that $(\sum_{\mathbf{y} \in \mathbf{y}} \mathbf{v} \mathbf{v} \mathbf{v})$ $\mathbf{w}^* = \underset{\mathbf{w}}{\arg\min} \|\Phi \mathbf{w} - \mathbf{y}\|^2 + \lambda ||\mathbf{w}||^2$ (7) $= \underset{\mathbf{w}}{\arg\min} (\mathbf{w}^T \Phi^T \Phi \mathbf{w} - 2\mathbf{w}^T \phi \mathbf{y} + \mathbf{y}^T \mathbf{y} + \lambda ||\mathbf{w}||^2)$ (8)

Foundations: Gradient Vector

- Magnitude (euclidean norm) of gradient vector at any point indicates maximum value of directional derivative at that point
- Thus, at the point of minimum of a differentiable minimization objective (such as least squares for regression),

We expect
$$\nabla f(\omega^*) = 0$$

Foundations: Necessary condition 1

• If $\nabla f(\mathbf{w}^*)$ is defined & \mathbf{w}^* is local minimum/maximum, then $\nabla f(\mathbf{w}^*) = 0$ (A necessary condition) (Cite: Theorem 60) of CS725/notes/classNotes/BasicsOfConvexOptimization.pdf

• Given that
$$\begin{cases} f(\mathbf{w}) = \arg\min(\mathbf{w}^T \Phi^T \Phi \mathbf{w} - 2\mathbf{w}^T \Phi^T \mathbf{y} - \mathbf{y}^T \mathbf{y} + \lambda ||\mathbf{w}||^2 \\ \Rightarrow \cdots \\ f(\mathbf{w}) = \arg\min(\mathbf{w}^T \Phi^T \Phi \mathbf{w} - 2\mathbf{w}^T \Phi^T \mathbf{y} - \mathbf{y}^T \mathbf{y} + \lambda ||\mathbf{w}||^2 \\ \Rightarrow \cdots \\ f(\mathbf{w}) = \begin{cases} 0 & \text{fw} \\ 0 & \text{fw} \end{cases} = \begin{cases} 0 & \text{fw} \end{cases} = \begin{cases} 0 & \text{fw} \\ 0 & \text{fw} \end{cases} = \begin{cases} 0 & \text{fw} \end{cases} = \begin{cases} 0 & \text{fw} \\ 0 & \text{$$

Foundations: Necessary condition 1

- If $\nabla f(\mathbf{w}^*)$ is defined & \mathbf{w}^* is local minimum/maximum, then $\nabla f(\mathbf{w}^*) = 0$ (A necessary condition) (Cite : Theorem 60) CS725/notes/classNotes/BasicsOfConvexOptimization.pdf
- Given that

$$f(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} (\mathbf{w}^T \Phi^T \Phi \mathbf{w} - 2\mathbf{w}^T \Phi^T \mathbf{y} - \mathbf{y}^T \mathbf{y} + \lambda ||\mathbf{w}||^2) \quad (9)$$

$$\implies \nabla f(\mathbf{w}) = 2\Phi^T \Phi \mathbf{w} - 2\Phi^T \mathbf{y} + 2\lambda \mathbf{w} \quad (10)$$
• We would have

$$\nabla f(\mathbf{w}^*) = 0 \tag{11}$$

$$\implies 2(\boldsymbol{\Phi}^T \boldsymbol{\Phi} + \lambda I) \mathbf{w}^* - 2\boldsymbol{\Phi}^T \mathbf{y} = 0$$
 (12)

$$\implies \mathbf{w}^* = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y} \tag{13}$$

Assuming unvertibility

Foundations: Necessary Condition 2

• Is $\nabla^2 f(\mathbf{w}^*)$ positive definite? i.e. $\forall \mathbf{x} \neq 0$, is $\mathbf{x}^T \nabla f(\mathbf{w}^*) \mathbf{x} > 0$? (A sufficient condition for local minimum)

(Note: Any positive definite matrix is also positive semi-definite)

(Cite: Section 3.12 & 3.12.1)¹

$$\nabla^{2}f(\omega) = \begin{bmatrix} \frac{\partial^{2}f(\omega)}{\partial \omega^{2}} & \nabla f(\omega) = \sqrt{\sqrt{2}} + \lambda \mathbf{I} \end{bmatrix} \omega - 2 \Phi^{T}y$$

$$\nabla^{2}f(\omega) = \sqrt{2} \int_{\partial \omega^{2}} \frac{\partial^{2}f(\omega)}{\partial \omega^{2}} + 2 \int_{\partial \omega^{$$

• And if Φ has full column rank,

T 0.4

$$\therefore$$
 If $\mathbf{x} \neq 0$, $\mathbf{x}^T \nabla^2 f(\mathbf{w}^*) \mathbf{x} > 0$

CS725/notes/classNotes/LinearAlgebra.pdf

Foundations: Necessary Condition 2

• Is $\nabla^2 f(\mathbf{w}^*)$ positive definite? i.e. $\forall \mathbf{x} \neq 0$, is $\mathbf{x}^T \nabla f(\mathbf{w}^*) \mathbf{x} > 0$? (A sufficient condition for local minimum)

(Any positive definite matrix is also positive semi-definite) (Cite: Section 3.12 & 3.12.1)²

$$\nabla^2 f(\mathbf{w}^*) = 2\Phi^T \Phi + 2\lambda I \tag{14}$$

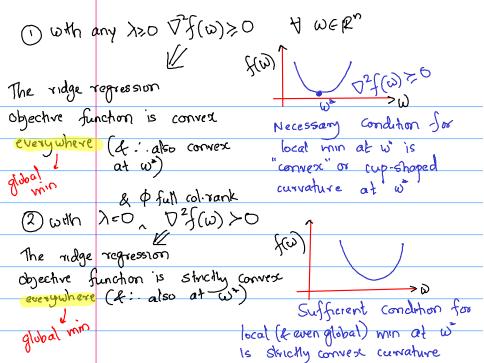
$$\implies \mathbf{x}^T \nabla^2 f(\mathbf{w}^*) \mathbf{x} = 2\mathbf{x}^T (\Phi^T \Phi + \lambda I) \mathbf{x}$$
 (15)

$$= 2\left(\left(\Phi + \sqrt{\lambda}I\right)\mathbf{x}\right)^T \Phi \mathbf{x} \quad (16)$$

$$-2 \left\| (\Phi + \sqrt{\lambda} I) \mathbf{v} \right\|^2 > 0 \quad (17)$$

$$= 2\left((\Phi + \sqrt{\lambda}I)\mathbf{x}\right) \Phi \mathbf{x} \qquad (16)$$
(About positive = $2\left\|(\Phi + \sqrt{\lambda}I)\mathbf{x}\right\|^2 \ge 0 \qquad (17)$
• And with $\lambda = 0$, if Φ has full column rank, $\|P\| = 0$ \(\text{ } \in \frac{1}{2}\) \(\text{ } \text{ } \in \frac{1}{2}\) \(\text{ } \in \frac{1}{2}\) \(\text{ } \text{ } \in \frac{1}{2}\) \(\text{ } \text{ }

²CS725/notes/classNotes/LinearAlgebra.pdf



New takenways:

(1) $\nabla^2 f(\omega) \geq 0$ $\forall \omega \Rightarrow f$ is convex evenwhere 4 ... necessary condition too local min to become global min (2) $\nabla^2 f(\omega) > 0 + \omega \Rightarrow f$ is strictly convex everywhere fsufficient condition for local min to become global min 3) If >>0, \$\forall^2 f(w)\$ tends to become "more" positive definite

Example of linearly correlated features

Example where Φ doesn't have a full column rank,

$$\Phi = \begin{bmatrix} x_1 & x_1^2 & x_1^2 & x_1^3 \\ x_2 & x_2^2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ x_n & x_n^2 & x_n^2 & x_n^3 \end{bmatrix}$$
(19)

- This is the simplest form of linear correlation of features, and it is not at all desirable.
- Effect of a nonzero λ with such Φ is that

Example of linearly correlated features

Example where Φ doesn't have a full column rank,

$$\Phi = \begin{bmatrix} x_1 & x_1^2 & x_1^2 & x_1^3 \\ x_2 & x_2^2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ x_n & x_n^2 & x_n^2 & x_n^3 \end{bmatrix}$$
(19)

- This is the simplest form of linear correlation of features, and it is not at all desirable.
- ullet Effect of a nonzero λ with such Φ is that it tends to make the Hessian more positive definite

Do Closed-form solutions Always Exist?

- Linear regression and Ridge regression both have closed-form solutions
 - For linear regression,

$$w^* = (\Phi^\top \Phi)^{-1} \Phi^\top y$$

• For ridge regression,

$$w^* = (\Phi^\top \Phi + \lambda I)^{-1} \Phi^\top \mathbf{y}$$

(for linear regression, $\lambda = 0$)

 What about optimizing the formulations (constrained/penalized) of Lasso (L₁ norm)? And support-based penalty (L₀ norm)?: Also requires tools of Optimization/duality