Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 9 - Optimization Foundations Applied to
Regression Formulations



Building on questions on Least Squares Linear Regression

© s there a probabilistic interpretation?
e Gaussian Error, Maximum Likelihood Estimate

@ Addressing overfitting
e Bayesian and Maximum Aposteriori Estimates, Regularization,
Support Vector Regression

© How to minimize the resultant and more complex error
functions?
o Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality



SVR objective

@ 1-norm Error, and L, regularized:
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@ 2-norm Error, and L, regularized:
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Need for Optimization so far

e Unconstrained (Penalized) Optimization:
WReg = argmin [|ow —y||3 + Q(w)
e Constrained Optimization 1:
WReg = arg min |ow —yl[3

such that Q(w) < 6
e Constrained Optimization 2 (t =1 or 2):
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st. Vi, yi—w! o(x;))—b<e+&; b+wlo(x;)—y <e+ &
e Equivalence: \ (Penalized) = ¢ (Constrained)
@ Duality: Dual of Support Vector Regression



Solving Unconstrained Minimization Problem

@ Intuitively: Minimize by setting derivative (gradient) to 0 and
hoping to find closed form solution.

@ When is such a solution a global minimum?

@ For most optimization problems, finding closed form solutions
is difficult. Even for linear regression (for which closed form
solution exists), are there alternative methods?

o Eg: Consider, y = ¢w,where ¢ is a matrix with full column
rank, the least squares solution, w* = (®7®)"1dTy . Now,
imagine that ¢ is a very large matrix. with say, 100,000
columns and 1,000,000 rows. Computation of closed form
solution might be challenging.

@ How about iterative methods?



Foundations: Level curves and surfaces

@ A level curve of a function f(x) is defined as a curve along
which the value of the function remains unchanged while we
change the value of its argument x.

@ Formally we can define a level curve as :

Le(6) = {xif(x) = <} W)

where c is a constant.



Foundations: Level curves and surfaces

@ Example of different level curves for a single function

Figure 1: 10 level curves for the function f(x1,x2) = x1€* (Figure 4.12
from https://www.cse.iitb.ac.in/~CS725/notes/classNotes/
Basics0fConvexOptimization.pdf)



https://www.cse.iitb.ac.in/~CS725/notes/classNotes/BasicsOfConvexOptimization.pdf
https://www.cse.iitb.ac.in/~CS725/notes/classNotes/BasicsOfConvexOptimization.pdf

Foundations: Directional Derivatives

@ Directional derivative: Rate at which the function changes at
a given point x in a given direction v

@ The directional derivative of a function f in the direction of a
unit vector v at a point x can be defined as :

Dv(fax):fl,i_r)no f(x+h\/l1)f(x) )
st [[v]l2=1 (3)




Foundations: Gradient Vector

@ The gradient vector of a function f at a point x is defined as:
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Vie=| . | R (4)

of(x)

L x,
e Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

@ Direction of gradient vector indicates direction of this
maximal directional derivative at that point.



Foundations: Gradient Vector

@ The figure below illustrates the gradient vector for the same
level curves

Figure 2: The level curves along with the gradient vector at (2, 0). Note

that the gradient vector is perpenducular to the level curve x;e* = 2 at
(2.0)




Hyperplanes

@ A hyperplane in an n-dimensional Euclidean space is a flat,
n-1 dimensional subset of that space that divides the space
into two disjoint half-spaces.

@ Technically, a hyperplane is a set of points whose direction
w.r.t. a point q is orthogonal to a vector v:

Hoa={p | (p-aTv =0 (5)

e Tangential Hyperplane: Plane orthogonal to the gradient
vector at x*.
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e = {p | (o - x)Tv1(x) =0} (6)



Foundations: Recall

We recall that the problem was to find w such that
w' = argmin||ow — || + Aljw|]? (7)
w

= argmin(w o dow —2w gy —yTy + A|jw|?) (8)

w



Foundations: Gradient Vector

e Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

@ Thus, at the point of minimum of a differentiable minimization
objective (such as least squares for regression), ....



Foundations: Necessary condition 1

o If Vf(w*) is defined & w* is local minimum/maximum, then
Vf(w*) =0 (A necessary condition) (Cite : Theorem
60) of cS725/notes/classNotes/Basics0fConvexOptimization.pdf

@ Given that

fw) = argmin(w’oTow —2w Ty —yTy 4+ Al|w||?
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Foundations: Necessary condition 1

o IfVf(w*) is defined & w* is local minimum/maximum, then
Vf(w*) =0 (A necessary condition) (Cite : Theorem
60) CS725/notes/classNotes/Basics0fConvexOptimization.pdf

o Given that
f(w) =argmin(w’ dTow — 2w’ dTy —yTy + \||w||?) (9)

— Vf(w)=20Tdw — 20Ty + 2\w (10)

@ We would have

Vi(w*) =0 (11)
— 27O+ M)Wt — 20Ty =0 (12)
— w'=(dTdo+ ) ToTy (13)
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Foundations: Necessary Condition 2

o Is V2f(w*) positive definite 7
ie. ¥x #0, is xT Vf(w*)x > 0? (A sufficient condition for
local minimum)
(Note : Any positive definite matrix is also positive
semi-definite)
(Cite : Section 3.12 & 3.12.1)!

S x#£0, xTV2F(w*)x >0
1CS725/n<>tes/classNotes/LinearAlgebra.pdf



http://en.wikipedia.org/wiki/Positive-definite_matrix
CS725/notes/classNotes/LinearAlgebra.pdf

Foundations: Necessary Condition 2

o Is V2f(w*) positive definite 7
ie. ¥x #0, is xT Vf(w*)x > 0? (A sufficient condition for
local minimum)
(Any positive definite matrix is also positive semi-definite)
(Cite : Section 3.12 & 3.12.1)2

V2f(w*) 2070 2\ (14)
— x'V2f(w)x = 2x"(dTd + \)x (15)
— 2 ((cb + ﬁ/)x) "ox  (16)

= 2@+ fA/)xH2 >0 (17)
@ And with A =0, if & has full column rank ,
Ox=0 iff x=0 (18)
S x#£0, xTV2F(wH)x >0

2CS?25/notes/classNotes/LinearAlgebra .pdf
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Example of linearly correlated features

@ Example where ® doesn’t have a full column rank,

X1 X12 xl2 xf’
X2 x22 X22 xg’

¢ = . ) (19)
Xn x,% x,% xg

@ This is the simplest form of linear correlation of features, and

it is not at all desirable.
@ Effect of a nonzero A with such @ is that



Example of linearly correlated features

@ Example where ® doesn’t have a full column rank,

X1 X12 xl2 xf’
X2 x22 X22 xg’

o= : . ) (19)
Xn x,% x,% xg

@ This is the simplest form of linear correlation of features, and
it is not at all desirable.

@ Effect of a nonzero A with such @ is that it tends to make the
Hessian more positive definite



Do Closed-form solutions Always Exist?

@ Linear regression and Ridge regression both have closed-form
solutions
o For linear regression,

wh = (dTo) o7y
e For ridge regression,
wh=(dTo+ ) ToTy
(for linear regression, A = 0)

@ What about optimizing the formulations
(constrained/penalized) of Lasso (L3 norm)? And
support-based penalty (Lo norm)?: Also requires tools of
Optimization/duality



