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Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan

Lecture 9 - Optimization Foundations Applied to
Regression Formulations
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Building on questions on Least Squares Linear Regression

1 Is there a probabilistic interpretation?

Gaussian Error, Maximum Likelihood Estimate

2 Addressing overfitting

Bayesian and Maximum Aposteriori Estimates, Regularization,
Support Vector Regression

3 How to minimize the resultant and more complex error
functions?

Level Curves and Surfaces, Gradient Vector, Directional
Derivative, Gradient Descent Algorithm, Convexity, Necessary
and Sufficient Conditions for Optimality
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SVR objective

1-norm Error, and L2 regularized:

minw ,b,ξi ,ξ∗i
1
2 ∥w∥2 + C

∑
i (ξi + ξ∗i )

s.t. ∀i ,
yi − w⊤ϕ(xi )− b ≤ ϵ+ ξi ,
b + w⊤ϕ(xi )− yi ≤ ϵ+ ξ∗i ,
ξi , ξ

∗
i ≥ 0

2-norm Error, and L2 regularized:

minw ,b,ξi ,ξ∗i
1
2 ∥w∥2 + C

∑
i (ξ

2
i + ξ∗2i )

s.t. ∀i ,
yi − w⊤ϕ(xi )− b ≤ ϵ+ ξi ,
b + w⊤ϕ(xi )− yi ≤ ϵ+ ξ∗i
Here, the constraints ξi , ξ

∗
i ≥ 0 are not necessary
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Need for Optimization so far

Unconstrained (Penalized) Optimization:

wReg = argmin
w

||ϕw − y||22 +Ω(w)

Constrained Optimization 1:

wReg = argmin
w

||ϕw − y||22

such that Ω(w) ≤ θ

Constrained Optimization 2 (t = 1 or 2):

argmin
w ,b,ξi ,ξ

∗
i

1

2
∥w∥2 + C

∑
i

(ξti + ξ∗ti )

s.t. ∀i , yi − w⊤ϕ(xi )− b ≤ ϵ+ ξi ; b + w⊤ϕ(xi )− yi ≤ ϵ+ ξ∗i
Equivalence: λ (Penalized) ≡ θ (Constrained)

Duality: Dual of Support Vector Regression
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Solving Unconstrained Minimization Problem

Intuitively: Minimize by setting derivative (gradient) to 0 and
hoping to find closed form solution.

When is such a solution a global minimum?

For most optimization problems, finding closed form solutions
is difficult. Even for linear regression (for which closed form
solution exists), are there alternative methods?

Eg: Consider, y = ϕw,where ϕ is a matrix with full column
rank, the least squares solution, w∗ = (ϕTϕ)−1ϕTy . Now,
imagine that ϕ is a very large matrix. with say, 100,000
columns and 1,000,000 rows. Computation of closed form
solution might be challenging.

How about iterative methods?
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Foundations: Level curves and surfaces

A level curve of a function f(x) is defined as a curve along
which the value of the function remains unchanged while we
change the value of its argument x.

Formally we can define a level curve as :

Lc(f) =

{
x|f(x) = c

}
(1)

where c is a constant.
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Foundations: Level curves and surfaces

Example of different level curves for a single function

Figure 1: 10 level curves for the function f(x1, x2) = x1ex2 (Figure 4.12
from https://www.cse.iitb.ac.in/~CS725/notes/classNotes/

BasicsOfConvexOptimization.pdf)

https://www.cse.iitb.ac.in/~CS725/notes/classNotes/BasicsOfConvexOptimization.pdf
https://www.cse.iitb.ac.in/~CS725/notes/classNotes/BasicsOfConvexOptimization.pdf
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Foundations: Directional Derivatives

Directional derivative: Rate at which the function changes at
a given point x in a given direction v

The directional derivative of a function f in the direction of a
unit vector v at a point x can be defined as :

Dv(f , x) = lim
h→0

f (x+ hv)− f(x)

h
(2)

s.t. ||v||2 = 1 (3)
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Foundations: Gradient Vector

The gradient vector of a function f at a point x is defined as:

∇fx∗ =


∂f (x)
∂x1
∂f (x)
∂x2
.
.

∂f (x)
∂xn

 ϵRn (4)

Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

Direction of gradient vector indicates direction of this
maximal directional derivative at that point.
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Foundations: Gradient Vector

The figure below illustrates the gradient vector for the same
level curves

Figure 2: The level curves along with the gradient vector at (2, 0). Note
that the gradient vector is perpenducular to the level curve x1e

x2 = 2 at
(2, 0)
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Hyperplanes

A hyperplane in an n-dimensional Euclidean space is a flat,
n-1 dimensional subset of that space that divides the space
into two disjoint half-spaces.

Technically, a hyperplane is a set of points whose direction
w.r.t. a point q is orthogonal to a vector v:

Hv,q =

{
p | (p− q)Tv = 0

}
(5)

Tangential Hyperplane: Plane orthogonal to the gradient
vector at x∗.

THx∗ =

{
p | (p− x∗)T∇f(x∗) = 0

}
(6)
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Hyperplanes

A hyperplane in an n-dimensional Euclidean space is a flat,
n-1 dimensional subset of that space that divides the space
into two disjoint half-spaces.

Technically, a hyperplane is a set of points whose direction
w.r.t. a point q is orthogonal to a vector v:

Hv,q =

{
p | (p− q)Tv = 0

}
(5)

Tangential Hyperplane: Plane orthogonal to the gradient
vector at x∗.

THx∗ =

{
p | (p− x∗)T∇f(x∗) = 0

}
(6)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Foundations: Recall

We recall that the problem was to find w such that

w∗ = argmin
w

∥ϕw − y∥2 + λ||w||2 (7)

= argmin
w

(wTϕTϕw − 2wTϕy − yTy + λ||w||2) (8)
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Foundations: Gradient Vector

Magnitude (euclidean norm) of gradient vector at any point
indicates maximum value of directional derivative at that point

Thus, at the point of minimum of a differentiable minimization
objective (such as least squares for regression), ....
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Foundations: Necessary condition 1

If ∇f (w∗) is defined & w∗ is local minimum/maximum, then
∇f (w∗) = 0 (A necessary condition) (Cite : Theorem

60) of CS725/notes/classNotes/BasicsOfConvexOptimization.pdf

Given that

f (w) = argmin
w

(wTϕTϕw − 2wTϕTy − yTy + λ||w||2)
=⇒ . . . . . . . . .

We would have

. . . . . . . . .

=⇒ . . . . . . . . . . . . . . . . . .

=⇒ . . . . . . . . . . . . . . . . . .

CS725/notes/classNotes/BasicsOfConvexOptimization.pdf
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Foundations: Necessary condition 1

If ∇f (w∗) is defined & w∗ is local minimum/maximum, then
∇f (w∗) = 0 (A necessary condition) (Cite : Theorem

60) CS725/notes/classNotes/BasicsOfConvexOptimization.pdf

Given that

f (w) = argmin
w

(wTϕTϕw − 2wTϕTy − yTy + λ||w||2)(9)

=⇒ ∇f (w) = 2ϕTϕw − 2ϕTy + 2λw (10)

We would have

∇f (w∗) = 0 (11)

=⇒ 2(ϕTϕ+ λI )w∗ − 2ϕTy = 0 (12)

=⇒ w∗ = (ϕTϕ+ λI )−1ϕTy(13)

CS725/notes/classNotes/BasicsOfConvexOptimization.pdf
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Foundations: Necessary Condition 2

Is ∇2f (w∗) positive definite ?
i.e. ∀x ̸= 0, is xT∇f (w∗)x > 0? (A sufficient condition for
local minimum)
(Note : Any positive definite matrix is also positive
semi-definite)
(Cite : Section 3.12 & 3.12.1)1

. . . . . . . . . . . . . . . . . .

=⇒ . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

And if ϕ has full column rank ,

. . . . . . . . . . . . . . . . . .

∴ If x ̸= 0, xT∇2f (w∗)x > 0
1
CS725/notes/classNotes/LinearAlgebra.pdf

http://en.wikipedia.org/wiki/Positive-definite_matrix
CS725/notes/classNotes/LinearAlgebra.pdf
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Foundations: Necessary Condition 2

Is ∇2f (w∗) positive definite ?
i.e. ∀x ̸= 0, is xT∇f (w∗)x > 0? (A sufficient condition for
local minimum)
(Any positive definite matrix is also positive semi-definite)
(Cite : Section 3.12 & 3.12.1)2

∇2f (w∗) = 2ϕTϕ+ 2λI (14)

=⇒ xT∇2f (w∗)x = 2xT (ϕTϕ+ λI )x (15)

= 2
(
(ϕ+

√
λI )x

)T
ϕx (16)

= 2
∥∥∥(ϕ+

√
λI )x

∥∥∥2 ≥ 0 (17)

And with λ = 0, if ϕ has full column rank ,

ϕx = 0 iff x = 0 (18)

∴ If x ̸= 0, xT∇2f (w∗)x > 0
2
CS725/notes/classNotes/LinearAlgebra.pdf

http://en.wikipedia.org/wiki/Positive-definite_matrix
CS725/notes/classNotes/LinearAlgebra.pdf
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Example of linearly correlated features

Example where ϕ doesn’t have a full column rank,

ϕ =


x1 x21 x21 x31
x2 x22 x22 x32
...

...
...

...
xn x2n x2n x3n

 (19)

This is the simplest form of linear correlation of features, and
it is not at all desirable.

Effect of a nonzero λ with such ϕ is that

it tends to make the
Hessian more positive definite
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Example of linearly correlated features

Example where ϕ doesn’t have a full column rank,

ϕ =


x1 x21 x21 x31
x2 x22 x22 x32
...

...
...

...
xn x2n x2n x3n

 (19)

This is the simplest form of linear correlation of features, and
it is not at all desirable.

Effect of a nonzero λ with such ϕ is that it tends to make the
Hessian more positive definite
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Do Closed-form solutions Always Exist?

Linear regression and Ridge regression both have closed-form
solutions

For linear regression,

w∗ = (ϕ⊤ϕ)−1ϕ⊤y

For ridge regression,

w∗ = (ϕ⊤ϕ+ λI )−1ϕ⊤y

(for linear regression, λ = 0)

What about optimizing the formulations
(constrained/penalized) of Lasso (L1 norm)? And
support-based penalty (L0 norm)?: Also requires tools of
Optimization/duality


