Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 10 - Optimization Foundations Applied to
Regression Formulations

Foundations: Necessary Condition 2

Is ∇²f(w*) positive definite?
 i.e. ∀x ≠ 0, is x^T∇f(w*)x > 0? (A sufficient condition for local minimum)

(Any positive definite matrix is also positive semi-definite)
(Cite: Section 3.12 & 3.12.1)¹

$$\nabla^2 f(\mathbf{w}^*) = 2\Phi^T \Phi + 2\lambda I \tag{1}$$

$$\implies \mathbf{x}^T \nabla^2 f(\mathbf{w}^*) \mathbf{x} = 2\mathbf{x}^T (\Phi^T \Phi + \lambda I) \mathbf{x}$$
 (2)

$$= 2\left(\left(\Phi + \sqrt{\lambda}I\right)\mathbf{x}\right)^T \Phi \mathbf{x} \qquad (3)$$

$$= 2 \left\| (\Phi + \sqrt{\lambda}I)\mathbf{x} \right\|^2 \ge 0 \qquad (4)$$

• And with $\lambda = 0$, if Φ has full column rank,

$$\Phi \mathbf{x} = 0 \quad iff \quad \mathbf{x} = 0 \tag{5}$$

$$\therefore$$
 If $\mathbf{x} \neq 0$, $\mathbf{x}^T \nabla^2 f(\mathbf{w}^*) \mathbf{x} > 0$

¹CS725/notes/classNotes/LinearAlgebra.pdf

Conclusion based on discussion of solution to problem 5 of Juts 3 64: (2) \Rightarrow Each eigenvalue of $(\phi^*\phi + \lambda I)$ will be positive & $(\phi^*\phi + \lambda I)$ will be positive definite since: υ (φ φ + λ Σ) ν 3 1 t = 11 φ ν 1 | 2 > 0] ν + 0

positive definite since: $\sqrt{(\phi^T \phi + \lambda I)} \sqrt{\frac{1}{2}} = \frac{||\phi v||^2 + \lambda ||v||^2}{2} = \frac{||\phi v||^2}{2} = \frac{||\phi v||^2}{2}$

Example of linearly correlated features

• Example where Φ doesn't have a full column rank,

$$\Phi = \begin{bmatrix} x_1 & x_1^2 & x_1^2 & x_1^3 \\ x_2 & x_2^2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ x_n & x_n^2 & x_n^2 & x_n^3 \end{bmatrix}$$
(6)

- This is the simplest form of linear correlation of features, and it is not at all desirable.
- Effect of a nonzero λ with such Φ is that
 Though Φ^TΦ is positive semidefinit (4 NOT positive def)
 (Φ^TΦ+λΙ) WILL be positive definit
 for ∀λ≥θ

Example of linearly correlated features

• Example where Φ doesn't have a full column rank,

$$\Phi = \begin{bmatrix} x_1 & x_1^2 & x_1^2 & x_1^3 \\ x_2 & x_2^2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ x_n & x_n^2 & x_n^2 & x_n^3 \end{bmatrix}$$
(6)

- This is the simplest form of linear correlation of features, and it is not at all desirable.
- ullet Effect of a nonzero λ with such Φ is that it tends to make the Hessian more positive definite

Do Closed-form solutions Always Exist?

- Linear regression and Ridge regression both have closed-form solutions
 - For linear regression,

$$w^* = (\Phi^\top \Phi)^{-1} \Phi^\top y$$

• For ridge regression,

$$w^* = (\Phi^\top \Phi + \lambda I)^{-1} \Phi^\top y$$

(for linear regression, $\lambda = 0$)

 What about optimizing the formulations (constrained/penalized) of Lasso (L₁ norm)? And support-based penalty (L₀ norm)?: Also requires tools of Optimization/duality

Gradient descent is based on our previous observation that if the multivariate function $F(\mathbf{x})$ is defined and differentiable in a neighborhood of a point \mathbf{a} , then $F(\mathbf{x})$ decreases fastest if one proceeds from \mathbf{a} in the direction of the negative of the gradient of F at \mathbf{a} , i.e. $-\nabla$ $F(\mathbf{a})$.

Therefore,

$$\frac{\Delta \mathbf{w}^{(k)}}{\text{Step direction}} = -\nabla \mathbf{E}(\mathbf{w}^{(k)}) \tag{7}$$

Hence,

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + 2\mathbf{t}^{(k)}(\mathbf{\Phi}^{\mathsf{T}}\mathbf{y} - \mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\mathbf{w}^{(k)} - \lambda\mathbf{w}^{(k)}) \qquad (8)$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \mathbf{t}^{(k)} \Delta \mathbf{\omega}^{(k)}$$

$$\mathbf{step Size}$$

Find starting point $\mathbf{w}^{(0)} \in \mathcal{D}$

- $\Delta \mathbf{w}^{\mathbf{k}} = -\nabla \varepsilon(\mathbf{w}^{(\mathbf{k})})$
- Choose a step size $t^{(k)} > 0$ using exact or backtracking ray search.
- Obtain $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \mathbf{t}^{(k)} \Delta \mathbf{w}^{(k)}$
- n-n+1. **until** stopping criterion (such as $\|\nabla \varepsilon(\mathbf{w}^{(k+1)})\| \leq \epsilon$) is satisfied contents • Set k = k + 1. until stopping criterion

Exact:
$$t^{(k)} = argmin E(\omega^{(k)} + t \Delta\omega^{(k)})$$

Reduced n dun produced n dun p

Reduced notion problem to

$$\nabla E(\omega^{(k)}) = 2\phi^{T}\phi\omega^{(k)} - 2\phi^{T}y, \quad \nabla E(\omega^{(k)}) = -2\phi^{T}y$$

$$t^{(k)} = argmin \quad E\left[\omega^{(k)} - t \quad \nabla E(\omega^{(k)})\right]$$

$$t^{(k)} = argmin \quad E\left[\omega^{(k)} + 2t \phi^{T}y\right]$$

$$= argmin \quad E\left[2t \phi^{T}y\right]$$

$$t^{(k)} = argmin \quad ||\phi(2t\phi^{T}y) - y||_{=argmin}^{2} ||2t \phi^{T}y|$$

$$t^{(k)} = argmin \quad ||\phi(2t\phi^{T}y) - y||_{=argmin}^{2} ||2t \phi^{T}y|$$

Tut problem 3: E(w)= | | \$\psi \w-y ||^2\$

Exact line search algorithm to find $t^{(k)}$

- The line search approach first finds a descent direction along which the objective function f will be reduced and then computes a step size that determines how far x should move along that direction.
- In general,

$$t^{(k)} = \underset{t}{\operatorname{arg\,min}} \ f\left(\mathbf{w}^{(k+1)}\right) \tag{9}$$

Thus,

Exact line search algorithm to find $t^{(k)}$

- The line search approach first finds a descent direction along which the objective function f will be reduced and then computes a step size that determines how far x should move along that direction.
- In general,

$$t^{(k)} = \arg\min_{t} f\left(\mathbf{w}^{(k+1)}\right) \tag{9}$$

Thus,

$$t^{(k)} = \underset{t}{\arg\min} \left(\mathbf{w}^{(k)} + 2\mathbf{t} \left(\mathbf{\Phi}^{\mathsf{T}} \mathbf{y} - \mathbf{\Phi}^{\mathsf{T}} \phi \mathbf{w}^{(k)} - \lambda \mathbf{w}^{(k)} \right) \right)$$
(10)
$$\mathsf{Tut} \; \mathbf{3}, \; \mathsf{prob} \; \mathbf{2}, \; \; \boldsymbol{\omega}^{(0)} = \mathcal{O} \Rightarrow \; \boldsymbol{\xi}^{(0)} = \mathcal{O}$$

Example of Gradient Descent Algorithm

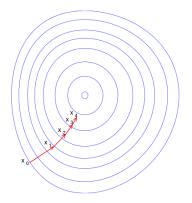


Figure 1: A red arrow originating at a point shows the direction of the negative gradient at that point. Note that the (negative) gradient at a point is orthogonal to the level curve going through that point. We see that gradient descent leads us to the bottom of the bowl, that is, to the point where the value of the function F is minimal. Source: Wikipidea

Constrained Least Squares Linear Regression

Find

$$\mathbf{w}^* = \underset{\mathbf{w}}{\text{arg min}} \|\phi \mathbf{w} - \mathbf{y}\|^2 \ s.t. \ \|\mathbf{w}\|_p \le \zeta, \tag{11}$$

where

$$\|\mathbf{w}\|_{p} = \left(\sum_{i=1}^{n} |w_{i}|^{p}\right)^{\frac{1}{p}}$$
 (12)

Claim: This is an equivalent reformulation of the penalized least squares. Why?

p-Norm level curves

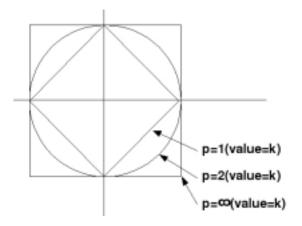


Figure 2: p-Norm curves for constant norm value and different p

Convex Optimization Problem

 Formally, a convex optimization problem is an optimization problem of the form

problem of the form
$$minimize f(x)$$

$$subject to c \in C$$

$$(14)$$
where f is a convex function, C is a convex set, and x is the

where f is a convex function, C is a convex set, and x is the optimization variable.

An improved form of the above would be minimize
$$f(x)$$

Subject to $g_i(x) < 0$, $i = 1, ..., m$

(16)

Convex gis subject to
$$g_i(\mathbf{x}) \leq 0, i = 1, ..., m$$
 (16)

Limear h; \Rightarrow convex subject to $g_i(\mathbf{x}) \leq 0, i = 1, ..., p$ (17)

where f is a convex function, g_i are convex functions, and h_i are affine functions, and x is the vector of optimization

Constrained convex problems

Q. How to solve constrained problems of the above-mentioned type?

A. General problem format :

