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Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan

Lecture 10 - Optimization Foundations Applied to
Regression Formulations
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Foundations: Necessary Condition 2

Is ∇2f (w∗) positive definite ?
i.e. ∀x ̸= 0, is xT∇f (w∗)x > 0? (A sufficient condition for
local minimum)
(Any positive definite matrix is also positive semi-definite)
(Cite : Section 3.12 & 3.12.1)1

∇2f (w∗) = 2ΦTΦ+ 2λI (1)

=⇒ xT∇2f (w∗)x = 2xT (ΦTΦ+ λI )x (2)

= 2
(
(Φ +

√
λI )x

)T
Φx (3)

= 2
∥∥∥(Φ +

√
λI )x

∥∥∥2 ≥ 0 (4)

And with λ = 0, if Φ has full column rank ,

Φx = 0 iff x = 0 (5)

∴ If x ̸= 0, xT∇2f (w∗)x > 0
1
CS725/notes/classNotes/LinearAlgebra.pdf

http://en.wikipedia.org/wiki/Positive-definite_matrix
CS725/notes/classNotes/LinearAlgebra.pdf
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Example of linearly correlated features

Example where Φ doesn’t have a full column rank,

Φ =


x1 x21 x21 x31
x2 x22 x22 x32
...

...
...

...
xn x2n x2n x3n

 (6)

This is the simplest form of linear correlation of features, and
it is not at all desirable.

Effect of a nonzero λ with such Φ is that

it tends to make the
Hessian more positive definite
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Example of linearly correlated features

Example where Φ doesn’t have a full column rank,

Φ =


x1 x21 x21 x31
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xn x2n x2n x3n
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Hessian more positive definite
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Do Closed-form solutions Always Exist?

Linear regression and Ridge regression both have closed-form
solutions

For linear regression,

w∗ = (Φ⊤Φ)−1Φ⊤y

For ridge regression,

w∗ = (Φ⊤Φ+ λI )−1Φ⊤y

(for linear regression, λ = 0)

What about optimizing the formulations
(constrained/penalized) of Lasso (L1 norm)? And
support-based penalty (L0 norm)?: Also requires tools of
Optimization/duality
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Gradient Descent Algorithm

Gradient descent is based on our previous observation that if the
multivariate function F (x) is defined and differentiable in a
neighborhood of a point a , then F (x) decreases fastest if one
proceeds from a in the direction of the negative of the gradient of
F at a ,i.e. -∇ F (a) .
Therefore,

∆w(k) = − ∇E(w(k)) (7)

Hence,

w(k+1) = w(k) + 2t(k)(ΦTy −ΦTΦw(k) − λw(k)) (8)
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Gradient Descent Algorithm

Find starting point w(0)ϵD
∆wk = −∇ε(w(k))

Choose a step size t(k) > 0 using exact or backtracking ray
search.

Obtain w(k+1) = w(k) + t(k)∆w(k).

Set k = k + 1. until stopping criterion
(such as ∥∇ε(w(k+1)) ∥≤ ϵ) is satisfied
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Gradient Descent Algorithm

Exact line search algorithm to find t(k)

The line search approach first finds a descent direction along
which the objective function f will be reduced and then
computes a step size that determines how far x should move
along that direction.

In general,

t(k) = argmin
t

f
(
w(k+1)

)
(9)

Thus,

t(k) = argmin
t

(
w(k) + 2t

(
ΦTy −ΦTϕw(k) − λw(k)

))
(10)
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Example of Gradient Descent Algorithm

Figure 1: A red arrow originating at a point shows the direction of the
negative gradient at that point. Note that the (negative) gradient at a
point is orthogonal to the level curve going through that point. We see
that gradient descent leads us to the bottom of the bowl, that is, to the
point where the value of the function F is minimal. Source: Wikipidea
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Constrained Least Squares Linear Regression

Find
w∗ = argmin

w
∥ϕw − y∥2 s.t. ∥w∥p ≤ ζ, (11)

where

∥w∥p =
( n∑
i=1

|wi |p
) 1

p
(12)

Claim: This is an equivalent reformulation of the penalized
least squares. Why?
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p-Norm level curves

Figure 2: p-Norm curves for constant norm value and different p



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex Optimization Problem

Formally, a convex optimization problem is an optimization
problem of the form

minimize f (x) (13)

subject to c ∈ C (14)

where f is a convex function, C is a convex set, and x is the
optimization variable.

An improved form of the above would be

minimize f (x) (15)

subject to gi (x) ≤ 0, i = 1, ...,m (16)

hi (x) = 0, i = 1, ..., p (17)

where f is a convex function, gi are convex functions, and hi
are affine functions, and x is the vector of optimization
variables.
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Constrained convex problems

Q. How to solve constrained problems of the above-mentioned
type?
A. General problem format :

Minimize f (w) s.t. g(w) ≤ 0 (18)

Figure 3: Level curves and constraint regions

Have a look at applet at http:
//www.slu.edu/classes/maymk/banchoff/LevelCurve.html

to appreciate this further.

http://www.slu.edu/classes/maymk/banchoff/LevelCurve.html
http://www.slu.edu/classes/maymk/banchoff/LevelCurve.html

