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Introduction to Machine Learning - CS725

Instructor: Prof. Ganesh Ramakrishnan

Lecture 11 - Constrained Optimization, KKT

Conditions, Duality, SVM Dual
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Convex Optimization Problem

Formally, a convex optimization problem is an optimization
problem of the form

minimize f (x) (1)

subject to c ∈ C (2)

where f is a convex function, C is a convex set, and x is the
optimization variable.

A specific form of the above would be

minimize f (x) (3)

subject to gi (x) ≤ 0, i = 1, ...,m (4)

hi (x) = 0, i = 1, ..., p (5)

where f is a convex function, gi are convex functions, and hi
are affine (linear) functions, and x is the vector of
optimization variables.
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Constrained convex problems

Q. How to solve constrained problems of the above-mentioned

type?

A. Canonical example:

Minimize f (w) s.t. g1(w) ≤ 0 (6)
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Constrained Convex Problems

If w∗ is on the boundary of g1, i.e., if g1(w
∗) = 0,

∇f (w∗) = −λ∇g1(w
∗) for some λ ≥ 0

Intuition:

1
∇⊥g1(w

∗) is the direction orthogonal to ∇g1(w
∗)

2Section 4.4, pg-72:

cs725/notes/BasicsOfConvexOptimization.pdf
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Constrained Convex Problems

If w∗ is on the boundary of g1, i.e., if g1(w
∗) = 0,

∇f (w∗) = −λ∇g1(w
∗) for some λ ≥ 0

Intuition: If the above didn’t hold, then we would have
∇f (w∗) = λ1∇g1(w

∗) + λ2∇⊥g1(w
∗), where, by moving in

direction1 ±∇⊥g1(w
∗) ( or −∇g1(w

∗)), we remain on
boundary g1(w

∗) = 0, ( or within g1(w
∗) ≤ 0) while

decreasing the value of f , which is not possible at the point of
optimality.

Thus, at the point of optimality2,

1
∇⊥g1(w

∗) is the direction orthogonal to ∇g1(w
∗)

2Section 4.4, pg-72:

cs725/notes/BasicsOfConvexOptimization.pdf
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Constrained Convex Problems

If w∗ is on the boundary of g1, i.e., if g1(w
∗) = 0,

∇f (w∗) = −λ∇g1(w
∗) for some λ ≥ 0

Intuition: If the above didn’t hold, then we would have
∇f (w∗) = λ1∇g1(w

∗) + λ2∇⊥g1(w
∗), where, by moving in

direction1 ±∇⊥g1(w
∗) ( or −∇g1(w

∗)), we remain on
boundary g1(w

∗) = 0, ( or within g1(w
∗) ≤ 0) while

decreasing the value of f , which is not possible at the point of
optimality.

Thus, at the point of optimality2, for some λ ≥ 0,

Either g1(w
∗) < 0 & ∇f (w∗) = 0 (7)

Or g1(w
∗) = 0 & ∇f (w∗) = −λ∇g1(w

∗) (8)

1
∇⊥g1(w

∗) is the direction orthogonal to ∇g1(w
∗)

2Section 4.4, pg-72:

cs725/notes/BasicsOfConvexOptimization.pdf
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Explaining the Figure

Figure 2: Two conditions under which a minimum can occur: a) When the minimum
is on the constraint function boundary, in which case the gradients are in opposite
directions; b) When point of minimum is inside the constraint space (shown in yellow
shade), in which case ∇f (w∗) = 0.
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More Explanation and Lagrange Function

The first condition occurs when minima lies on the boundary
of function g . In this case, gradient vectors corresponding to
the functions f and g , at w∗, point in opposite directions
barring multiplication by a real constant.

Second condition represents the case that point of minimum
lies inside the constraint space. This space is shown shaded in
Figure 1. Clearly, for this case, ∇f (w) = 0.

An Alternative Representation: ∇L(w, λ) = 0 for some λ ≥ 0
where

L(w, λ) = f (w) + λg(w);λ ∈ R

is called the lagrange function which has objective function
augmented by weighted sum of constraint functions
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Duality and KKT conditions

For a convex objective and constraint function, the minima, w∗,
can satisfy one of the following two conditions:

1 g(w∗) = 0 and ∇f (w∗) = −λ∇g(w∗)

2 g(w∗) < 0 and ∇f (w∗) = 0
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Duality and KKT conditions

Here, we wish to penalize higher magnitude coefficients,
hence, we wish g(w) to be negative while minimizing the
lagrangian. In order to maintain such direction, we must have
λ ≥ 0. Also, for solution w to be feasible, ∇g(w) ≤ 0.

Due to complementary slackness condition, we further have
λg(w) = 0, which roughly suggests that the lagrange
multiplier is zero unless constraint is active at the minimum
point. As w minimizes the lagrangian L(w, λ), gradient must
vanish at this point and hence we have f (w) + λ∇g(w) = 0


