Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 11 - Constrained Optimization, KKT
Conditions, Duality, SVM Dual

### Convex Optimization Problem

 Formally, a convex optimization problem is an optimization problem of the form

$$minimize \ f(\mathbf{x}) \tag{1}$$

subject to 
$$c \in C$$
 (2)

where f is a convex function, C is a convex set, and  $\mathbf{x}$  is the optimization variable.

• A specific form of the above would be

$$minimize f(\mathbf{x}) \tag{3}$$

subject to 
$$g_i(\mathbf{x}) \leq 0, i = 1,...,m$$
 (4)

$$h_i(\mathbf{x}) = 0, i = 1, ..., p$$
 (5)

where f is a convex function,  $g_i$  are convex functions, and  $h_i$  are affine (linear) functions, and  $\mathbf{x}$  is the vector of optimization variables.

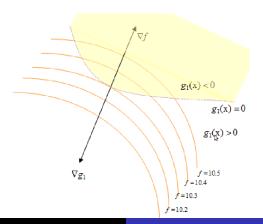


### Constrained convex problems

**Q.** How to solve constrained problems of the above-mentioned type?

**A.** Canonical example:

Minimize 
$$f(\mathbf{w})$$
 s.t.  $g_1(\mathbf{w}) \le 0$  (6)



#### Constrained Convex Problems

• If  $\mathbf{w}^*$  is on the boundary of  $g_1$ , *i.e.*, if  $g_1(\mathbf{w}^*) = 0$ ,

$$\nabla f(\mathbf{w}^*) = -\lambda \nabla g_1(\mathbf{w}^*)$$
 for some  $\lambda \geq 0$ 

Intuition:

 $<sup>{}^1</sup>abla_{\perp}g_1(\mathbf{w}^*)$  is the direction orthogonal to  $abla g_1(\mathbf{w}^*)$ 

<sup>&</sup>lt;sup>2</sup>Section 4.4, pg-72:

#### Constrained Convex Problems

• If  $\mathbf{w}^*$  is on the boundary of  $g_1$ , *i.e.*, if  $g_1(\mathbf{w}^*) = 0$ ,

$$abla f(\mathbf{w}^*) = -\lambda 
abla g_1(\mathbf{w}^*)$$
 for some  $\lambda \geq 0$ 

- Intuition: If the above didn't hold, then we would have  $\nabla f(\mathbf{w}^*) = \lambda_1 \nabla g_1(\mathbf{w}^*) + \lambda_2 \nabla_\perp g_1(\mathbf{w}^*)$ , where, by moving in direction  $^1 \pm \nabla_\perp g_1(\mathbf{w}^*)$  (or  $-\nabla g_1(\mathbf{w}^*)$ ), we remain on boundary  $g_1(\mathbf{w}^*) = 0$ , (or within  $g_1(\mathbf{w}^*) \leq 0$ ) while decreasing the value of f, which is not possible at the point of optimality.
- Thus, at the point of optimality<sup>2</sup>,

 $<sup>{}^1</sup>abla_\perp g_1(\mathbf{w}^*)$  is the direction orthogonal to  $abla g_1(\mathbf{w}^*)$ 

<sup>&</sup>lt;sup>2</sup>Section 4.4, pg-72:

#### Constrained Convex Problems

• If  $\mathbf{w}^*$  is on the boundary of  $g_1$ , *i.e.*, if  $g_1(\mathbf{w}^*) = 0$ ,

$$abla f(\mathbf{w}^*) = -\lambda 
abla g_1(\mathbf{w}^*)$$
 for some  $\lambda \geq 0$ 

- Intuition: If the above didn't hold, then we would have  $\nabla f(\mathbf{w}^*) = \lambda_1 \nabla g_1(\mathbf{w}^*) + \lambda_2 \nabla_\perp g_1(\mathbf{w}^*)$ , where, by moving in direction  $^1 \pm \nabla_\perp g_1(\mathbf{w}^*)$  (or  $-\nabla g_1(\mathbf{w}^*)$ ), we remain on boundary  $g_1(\mathbf{w}^*) = 0$ , (or within  $g_1(\mathbf{w}^*) \leq 0$ ) while decreasing the value of f, which is not possible at the point of optimality.
- Thus, at the point of optimality<sup>2</sup>, for some  $\lambda \geq 0$ ,

Either 
$$g_1(\mathbf{w}^*) < 0$$
 &  $\nabla f(\mathbf{w}^*) = 0$  (7)

Or 
$$g_1(\mathbf{w}^*) = 0$$
 &  $\nabla f(\mathbf{w}^*) = -\lambda \nabla g_1(\mathbf{w}^*)$  (8)

 $<sup>{}^1</sup>abla_\perp g_1(\mathbf{w}^*)$  is the direction orthogonal to  $abla g_1(\mathbf{w}^*)$ 

<sup>&</sup>lt;sup>2</sup>Section 4.4, pg-72:

# **Explaining the Figure**

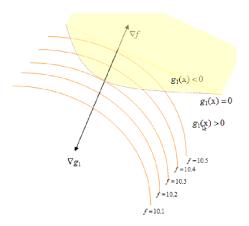


Figure 2: Two conditions under which a minimum can occur: a) When the minimum is on the constraint function boundary, in which case the gradients are in opposite directions; b) When point of minimum is inside the constraint space (shown in yellow shade), in which case  $\nabla f(\mathbf{w}^*) = \mathbf{0}$ .

### More Explanation and Lagrange Function

- The first condition occurs when minima lies on the boundary
  of function g. In this case, gradient vectors corresponding to
  the functions f and g, at w\*, point in opposite directions
  barring multiplication by a real constant.
- Second condition represents the case that point of minimum lies inside the constraint space. This space is shown shaded in Figure 1. Clearly, for this case,  $\nabla f(\mathbf{w}) = \mathbf{0}$ .
- An Alternative Representation:  $\nabla L(\mathbf{w}, \lambda) = 0$  for some  $\lambda \geq 0$  where

$$L(\mathbf{w}, \lambda) = f(\mathbf{w}) + \lambda \mathbf{g}(\mathbf{w}); \lambda \in \mathbb{R}$$

is called the lagrange function which has objective function augmented by weighted sum of constraint functions



## Duality and KKT conditions

For a convex objective and constraint function, the minima,  $\mathbf{w}^*$ , can satisfy one of the following two conditions:

**2** 
$$g(\mathbf{w}^*) < \mathbf{0}$$
 and  $\nabla f(\mathbf{w}^*) = \mathbf{0}$ 

## Duality and KKT conditions

- Here, we wish to penalize higher magnitude coefficients, hence, we wish  $g(\mathbf{w})$  to be negative while minimizing the lagrangian. In order to maintain such direction, we must have  $\lambda \geq 0$ . Also, for solution  $\mathbf{w}$  to be feasible,  $\nabla g(\mathbf{w}) \leq \mathbf{0}$ .
- Due to complementary slackness condition, we further have  $\lambda g(\mathbf{w}) = \mathbf{0}$ , which roughly suggests that the lagrange multiplier is zero unless constraint is active at the minimum point. As  $\mathbf{w}$  minimizes the lagrangian  $L(\mathbf{w}, \lambda)$ , gradient must vanish at this point and hence we have  $f(\mathbf{w}) + \lambda \nabla \mathbf{g}(\mathbf{w}) = \mathbf{0}$