Introduction to Machine Learning - CS725 Instructor: Prof. Ganesh Ramakrishnan Lecture 11 - Constrained Optimization, KKT Conditions, Duality, SVM Dual

Convex Optimization Problem

- Formally, a convex optimization problem is an optimization problem of the form

$$
\begin{array}{r}
\text { minimize } f(\mathbf{x}) \\
\text { subject to } c \in C \tag{2}
\end{array}
$$

where f is a convex function, C is a convex set, and \mathbf{x} is the optimization variable.

- A specific form of the above would be

$$
\begin{align*}
\operatorname{minimize} f(\mathbf{x}) & \tag{3}\\
\text { subject to } g_{i}(\mathbf{x}) & \leq 0, i=1, \ldots, m \tag{4}\\
h_{i}(\mathbf{x}) & =0, i=1, \ldots, p \tag{5}
\end{align*}
$$

where f is a convex function, g_{i} are convex functions, and h_{i} are affine (linear) functions, and \mathbf{x} is the vector of optimization variables.

Constrained convex problems

Q. How to solve constrained problems of the above-mentioned type?
A. Canonical example:

$$
\begin{equation*}
\text { Minimize } f(\mathbf{w}) \text { s.t. } g_{1}(\mathbf{w}) \leq 0 \tag{6}
\end{equation*}
$$

Constrained Convex Problems

- If \mathbf{w}^{*} is on the boundary of g_{1}, i.e., if $g_{1}\left(\mathbf{w}^{*}\right)=0$,

$$
\nabla f\left(\mathbf{w}^{*}\right)=-\lambda \nabla g_{1}\left(\mathbf{w}^{*}\right) \text { for some } \lambda \geq 0
$$

- Intuition:

[^0]
Constrained Convex Problems

- If \mathbf{w}^{*} is on the boundary of g_{1}, i.e., if $g_{1}\left(\mathbf{w}^{*}\right)=0$,

$$
\nabla f\left(\mathbf{w}^{*}\right)=-\lambda \nabla g_{1}\left(\mathbf{w}^{*}\right) \text { for some } \lambda \geq 0
$$

- Intuition: If the above didn't hold, then we would have $\nabla f\left(\mathbf{w}^{*}\right)=\lambda_{1} \nabla g_{1}\left(\mathbf{w}^{*}\right)+\lambda_{2} \nabla \perp g_{1}\left(\mathbf{w}^{*}\right)$, where, by moving in direction ${ }^{1} \pm \nabla_{\perp} g_{1}\left(\mathbf{w}^{*}\right)\left(\right.$ or $\left.-\nabla g_{1}\left(\mathbf{w}^{*}\right)\right)$, we remain on boundary $g_{1}\left(\mathbf{w}^{*}\right)=0$, (or within $g_{1}\left(\mathbf{w}^{*}\right) \leq 0$) while decreasing the value of f, which is not possible at the point of optimality.
- Thus, at the point of optimality ${ }^{2}$,

[^1]
Constrained Convex Problems

- If \mathbf{w}^{*} is on the boundary of g_{1}, i.e., if $g_{1}\left(\mathbf{w}^{*}\right)=0$,

$$
\nabla f\left(\mathbf{w}^{*}\right)=-\lambda \nabla g_{1}\left(\mathbf{w}^{*}\right) \text { for some } \lambda \geq 0
$$

- Intuition: If the above didn't hold, then we would have $\nabla f\left(\mathbf{w}^{*}\right)=\lambda_{1} \nabla g_{1}\left(\mathbf{w}^{*}\right)+\lambda_{2} \nabla_{\perp} g_{1}\left(\mathbf{w}^{*}\right)$, where, by moving in direction ${ }^{1} \pm \nabla_{\perp} g_{1}\left(\mathbf{w}^{*}\right)$ (or $-\nabla g_{1}\left(\mathbf{w}^{*}\right)$), we remain on boundary $g_{1}\left(\mathbf{w}^{*}\right)=0$, (or within $g_{1}\left(\mathbf{w}^{*}\right) \leq 0$) while decreasing the value of f, which is not possible at the point of optimality.
- Thus, at the point of optimality ${ }^{2}$, for some $\lambda \geq 0$,

$$
\begin{align*}
& \text { Either } g_{1}\left(\mathbf{w}^{*}\right)<0 \quad \& \quad \nabla f\left(\mathbf{w}^{*}\right)=0 \tag{7}\\
& \text { Or } g_{1}\left(\mathbf{w}^{*}\right)=0 \quad \& \quad \nabla f\left(\mathbf{w}^{*}\right)=-\lambda \nabla g_{1}\left(\mathbf{w}^{*}\right) \tag{8}
\end{align*}
$$

[^2]
Explaining the Figure

Figure 2: Two conditions under which a minimum can occur: a) When the minimum is on the constraint function boundary, in which case the gradients are in opposite directions; b) When point of minimum is inside the constraint space (shown in yellow shade), in which case $\nabla f\left(\mathbf{w}^{*}\right)=\mathbf{0}$.

More Explanation and Lagrange Function

- The first condition occurs when minima lies on the boundary of function g. In this case, gradient vectors corresponding to the functions f and g, at \mathbf{w}^{*}, point in opposite directions barring multiplication by a real constant.
- Second condition represents the case that point of minimum lies inside the constraint space. This space is shown shaded in Figure 1. Clearly, for this case, $\nabla f(\mathbf{w})=\mathbf{0}$.
- An Alternative Representation: $\nabla L(\mathbf{w}, \lambda)=0$ for some $\lambda \geq 0$ where

$$
L(\mathbf{w}, \lambda)=f(\mathbf{w})+\lambda \mathbf{g}(\mathbf{w}) ; \lambda \in \mathbb{R}
$$

is called the lagrange function which has objective function augmented by weighted sum of constraint functions

Duality and KKT conditions

For a convex objective and constraint function, the minima, \mathbf{w}^{*}, can satisfy one of the following two conditions:
(1) $g\left(\mathbf{w}^{*}\right)=\mathbf{0}$ and $\nabla f\left(\mathbf{w}^{*}\right)=-\lambda \nabla \mathbf{g}\left(\mathbf{w}^{*}\right)$
(2) $g\left(\mathbf{w}^{*}\right)<\mathbf{0}$ and $\nabla f\left(\mathbf{w}^{*}\right)=\mathbf{0}$

Duality and KKT conditions

- Here, we wish to penalize higher magnitude coefficients, hence, we wish $g(\mathbf{w})$ to be negative while minimizing the lagrangian. In order to maintain such direction, we must have $\lambda \geq 0$. Also, for solution \mathbf{w} to be feasible, $\nabla g(\mathbf{w}) \leq \mathbf{0}$.
- Due to complementary slackness condition, we further have $\lambda g(\mathbf{w})=\mathbf{0}$, which roughly suggests that the lagrange multiplier is zero unless constraint is active at the minimum point. As \mathbf{w} minimizes the lagrangian $L(\mathbf{w}, \lambda)$, gradient must vanish at this point and hence we have $f(\mathbf{w})+\lambda \nabla \mathbf{g}(\mathbf{w})=\mathbf{0}$

[^0]: ${ }^{1} \nabla_{\perp} g_{1}\left(\mathbf{w}^{*}\right)$ is the direction orthogonal to $\nabla g_{1}\left(\mathbf{w}^{*}\right)$
 ${ }^{2}$ Section 4.4, pg-72:
 cs725/notes/BasicsOfConvexOptimization.pdf

[^1]: ${ }^{1} \nabla_{\perp} g_{1}\left(\mathbf{w}^{*}\right)$ is the direction orthogonal to $\nabla g_{1}\left(\mathbf{w}^{*}\right)$
 ${ }^{2}$ Section 4.4, pg-72:
 cs725/notes/BasicsOfConvexOptimization.pdf

[^2]: ${ }^{1} \nabla_{\perp} g_{1}\left(\mathbf{w}^{*}\right)$ is the direction orthogonal to $\nabla g_{1}\left(\mathbf{w}^{*}\right)$
 ${ }^{2}$ Section 4.4, pg-72:
 cs725/notes/BasicsOfConvexOptimization.pdf

