Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 11 - Constrained Optimization, KKT
Conditions, Duality, SVM Dual

Convex Optimization Problem

 Formally, a convex optimization problem is an optimization problem of the form

$$minimize \ f(\mathbf{x}) \tag{1}$$

subject to
$$c \in C$$
 (2)

where f is a convex function, C is a convex set, and \mathbf{x} is the optimization variable.

• A specific form of the above would be

$$minimize f(\mathbf{x}) \tag{3}$$

subject to
$$g_i(\mathbf{x}) \leq 0, i = 1,...,m$$
 (4)

$$h_i(\mathbf{x}) = 0, i = 1, ..., p$$
 (5)

where f is a convex function, g_i are convex functions, and h_i are affine (linear) functions, and \mathbf{x} is the vector of optimization variables.

Constrained convex problems

Q. How to solve constrained problems of the above-mentioned type?

A. Canonical example:

Minimize
$$f(\mathbf{w})$$
 s.t. $g_1(\mathbf{w}) \le 0$ (6)

Constrained Convex Problems

• If \mathbf{w}^* is on the boundary of g_1 , *i.e.*, if $g_1(\mathbf{w}^*) = 0$,

$$\nabla f(\mathbf{w}^*) = -\lambda \nabla g_1(\mathbf{w}^*)$$
 for some $\lambda \geq 0$

Intuition:

 $^{{}^1}abla_{\perp}g_1(\mathbf{w}^*)$ is the direction orthogonal to $abla g_1(\mathbf{w}^*)$

²Section 4.4, pg-72:

Constrained Convex Problems

• If \mathbf{w}^* is on the boundary of g_1 , *i.e.*, if $g_1(\mathbf{w}^*) = 0$,

$$abla f(\mathbf{w}^*) = -\lambda
abla g_1(\mathbf{w}^*)$$
 for some $\lambda \geq 0$

- Intuition: If the above didn't hold, then we would have $\nabla f(\mathbf{w}^*) = \lambda_1 \nabla g_1(\mathbf{w}^*) + \lambda_2 \nabla_\perp g_1(\mathbf{w}^*)$, where, by moving in direction $^1 \pm \nabla_\perp g_1(\mathbf{w}^*)$ (or $-\nabla g_1(\mathbf{w}^*)$), we remain on boundary $g_1(\mathbf{w}^*) = 0$, (or within $g_1(\mathbf{w}^*) \leq 0$) while decreasing the value of f, which is not possible at the point of optimality.
- Thus, at the point of optimality²,

 $^{{}^1}abla_\perp g_1(\mathbf{w}^*)$ is the direction orthogonal to $abla g_1(\mathbf{w}^*)$

²Section 4.4, pg-72:

Constrained Convex Problems

• If \mathbf{w}^* is on the boundary of g_1 , *i.e.*, if $g_1(\mathbf{w}^*) = 0$,

$$abla f(\mathbf{w}^*) = -\lambda
abla g_1(\mathbf{w}^*)$$
 for some $\lambda \geq 0$

- Intuition: If the above didn't hold, then we would have $\nabla f(\mathbf{w}^*) = \lambda_1 \nabla g_1(\mathbf{w}^*) + \lambda_2 \nabla_\perp g_1(\mathbf{w}^*)$, where, by moving in direction $^1 \pm \nabla_\perp g_1(\mathbf{w}^*)$ (or $-\nabla g_1(\mathbf{w}^*)$), we remain on boundary $g_1(\mathbf{w}^*) = 0$, (or within $g_1(\mathbf{w}^*) \leq 0$) while decreasing the value of f, which is not possible at the point of optimality.
- Thus, at the point of optimality², for some $\lambda \geq 0$,

Either
$$g_1(\mathbf{w}^*) < 0$$
 & $\nabla f(\mathbf{w}^*) = 0$ (7)

Or
$$g_1(\mathbf{w}^*) = 0$$
 & $\nabla f(\mathbf{w}^*) = -\lambda \nabla g_1(\mathbf{w}^*)$ (8)

 $^{{}^1}abla_\perp g_1(\mathbf{w}^*)$ is the direction orthogonal to $abla g_1(\mathbf{w}^*)$

²Section 4.4, pg-72:

Explaining the Figure

Figure 2: Two conditions under which a minimum can occur: a) When the minimum is on the constraint function boundary, in which case the gradients are in opposite directions; b) When point of minimum is inside the constraint space (shown in yellow shade), in which case $\nabla f(\mathbf{w}^*) = \mathbf{0}$.

More Explanation and Lagrange Function

- The first condition occurs when minima lies on the boundary
 of function g. In this case, gradient vectors corresponding to
 the functions f and g, at w*, point in opposite directions
 barring multiplication by a real constant.
- Second condition represents the case that point of minimum lies inside the constraint space. This space is shown shaded in Figure 1. Clearly, for this case, $\nabla f(\mathbf{w}) = \mathbf{0}$.
- An Alternative Representation: $\nabla L(\mathbf{w}, \lambda) = 0$ for some $\lambda \geq 0$ where

$$L(\mathbf{w}, \lambda) = f(\mathbf{w}) + \lambda \mathbf{g}(\mathbf{w}); \lambda \in \mathbb{R}$$

is called the lagrange function which has objective function augmented by weighted sum of constraint functions

Duality and KKT conditions

For a convex objective and constraint function, the minima, \mathbf{w}^* , can satisfy one of the following two conditions:

2
$$g(\mathbf{w}^*) < \mathbf{0}$$
 and $\nabla f(\mathbf{w}^*) = \mathbf{0}$

Duality and KKT conditions

- Here, we wish to penalize higher magnitude coefficients, hence, we wish $g(\mathbf{w})$ to be negative while minimizing the lagrangian. In order to maintain such direction, we must have $\lambda \geq 0$. Also, for solution \mathbf{w} to be feasible, $\nabla g(\mathbf{w}) \leq \mathbf{0}$.
- Due to complementary slackness condition, we further have $\lambda g(\mathbf{w}) = \mathbf{0}$, which roughly suggests that the lagrange multiplier is zero unless constraint is active at the minimum point. As \mathbf{w} minimizes the lagrangian $L(\mathbf{w}, \lambda)$, gradient must vanish at this point and hence we have $f(\mathbf{w}) + \lambda \nabla \mathbf{g}(\mathbf{w}) = \mathbf{0}$