Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 11 - Constrained Optimization, KKT
Conditions, Duality, SVM Dual



Convex Optimization Problem

@ Formally, a convex optimization problem is an optimization
problem of the form

minimize f(x) (1)
subject toc € C (2)
where f is a convex function, C is a convex set, and x is the

optimization variable.
@ A specific form of the above would be

minimize f(x) (3)
subject to gi(x) < 0, i=1,..m (4)
hi(x) = 0,i=1,...p (5)
where f is a convex function, g; are convex functions, and h;

are affine (linear) functions, and x is the vector of
optimization variables.



Constrained convex problems

Q. How to solve constrained problems of the above-mentioned

type?
A. Canonical example:
Minimize f(w) s.t. gi(w) <0 (6)
“—
g1(x) <0
f(x)=0
/ 2@ >0
Va, F=105
/=104
f=103

F=102
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Constrained Convex Problems

e If w* is on the boundary of g1, i.e., if g1(w*) =0,
Vi(w*) = =AVgi(w*) for some A >0

@ Intuition:

'V | g1(w*) is the direction orthogonal to Vgi(w*)
2Section 4.4, pg-72:
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Constrained Convex Problems

e If w* is on the boundary of g1, i.e., if g1(w*) =0,
Vi(w*) = =AVgi(w*) for some A >0

@ Intuition: If the above didn’t hold, then we would have
Vi(w*) = AiVgi(w*) + AoV g1(w*), where, by moving in
direction! £V | g1(w*) (‘or —Vgi(w*)), we remain on
boundary gi(w*) =0, ( or within gi(w*) < 0) while
decreasing the value of f, which is not possible at the point of
optimality.

@ Thus, at the point of optimality?,

'V | g1(w*) is the direction orthogonal to Vgi(w*)
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Constrained Convex Problems

e If w* is on the boundary of g1, i.e., if g1(w*) =0,
Vi(w*) = =AVgi(w*) for some A >0

@ Intuition: If the above didn’t hold, then we would have
Vi(w*) = AiVgi(w*) + AoV g1(w*), where, by moving in
direction! £V | g1(w*) (‘or —Vgi(w*)), we remain on
boundary gi(w*) =0, ( or within gi(w*) < 0) while
decreasing the value of f, which is not possible at the point of
optimality.

@ Thus, at the point of optimality?, for some A > 0,

Either g1(w*) <0 & Vf(w*)=0 (7)
Or gi(w*)=0 & Vf(w*")=-AVgi(w*) (8)

'V | g1(w*) is the direction orthogonal to Vgi(w*)
2Section 4.4, pg-72:
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Explaining the Figure

Zi(x) <0
21(x)=0
() =0
Vz F=105
F=104
f=103
f=102

Figure 2: Two conditions under which a minimum can occur: a) When the minimum
is on the constraint function boundary, in which case the gradients are in opposite
directions; b) When point of minimum is inside the constraint space (shown in yellow
shade), in which case Vf(w*) = 0.




More Explanation and Lagrange Function

@ The first condition occurs when minima lies on the boundary
of function g. In this case, gradient vectors corresponding to
the functions f and g, at w*, point in opposite directions
barring multiplication by a real constant.

@ Second condition represents the case that point of minimum
lies inside the constraint space. This space is shown shaded in
Figure 1. Clearly, for this case, Vf(w) = 0.

@ An Alternative Representation: VL(w,\) = 0 for some A > 0
where

L(w,\) =f(w)+Ag(w); A eR

is called the lagrange function which has objective function
augmented by weighted sum of constraint functions



Duality and KKT conditions

For a convex objective and constraint function, the minima, w*,
can satisfy one of the following two conditions:

Q g(w*) =0 and VF(w*) = —AVg(w*)
Q@ g(w*) <0and Vi(w*) =10



Duality and KKT conditions

@ Here, we wish to penalize higher magnitude coefficients,
hence, we wish g(w) to be negative while minimizing the
lagrangian. In order to maintain such direction, we must have
A > 0. Also, for solution w to be feasible, Vg(w) < 0.

@ Due to complementary slackness condition, we further have
Ag(w) = 0, which roughly suggests that the lagrange
multiplier is zero unless constraint is active at the minimum
point. As w minimizes the lagrangian L(w, \), gradient must
vanish at this point and hence we have f(w) + AVg(w) =0



