Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan

Lecture 12 - KKT Conditions, Duality, SVR Dual



KKT conditions for the Constrained ( ) Problem

@ The general optimization problem we consider with (convex)
inequality and (linear) equality constraints is:

mvjn f(w)

subject to gi(w) <0;1<i<m

hij(w)=0;1<,<p



KKT conditions for the Constrained ( ) Problem

@ Here, w € R"” and the domain is the intersection of all
functions. Lagrangian is:

L(w, A, i) = F(w) + > Nigi(w) + > pihi(w)
j=1

i=1
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e KKT necessary conditions for all differentiable functions (i.e.
f,gi, hj) with optimality points W and (/\ i) are:
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e KKT necessary conditions for all differentiable functions (i.e.
f,gi, hj) with optimality points W and (/\ i) are:

on(W)—l—Z, 1/\Vg,( )+ 3P 4V hi(W) =0

@ When f and g;, Vi € [1, m] are convex and h;,Vj € [1, p] are
affine, KKT conditions are also sufficient for optimality at w
and (A, /i)



Lagrangian Duality and KKT conditions

o With w € R" and A € R”, iu € RP, Lagrangian is:

L(w, A i) = F(w) + > Nigi(w) + > pihj(w)
j=1

i=1

@ Lagrange dual function is minimum of Lagrangian over w.
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Lagrangian Duality and KKT conditions

o With w € R" and A € R”, iu € RP, Lagrangian is:
m P
L(w, A i) = F(w) + > Nigi(w) + > pihj(w)
i=1 j=1
@ Lagrange dual function is minimum of Lagrangian over w.

L*(A\, ) = min L(w, A\, 1)

@ The Dual Optimization Problem is to maximize Lagrange dual
function L*(\, ) over (A, p)

argmax L*(A, u) = argmax min L(w, A\, p1)
W A w



Extra: Lagrangian Duality and KKT conditions

@ The dual function yields lower bound for minimizer of the
primal formulation.

e Max of dual function L*(\, i) over (\, ) is also therefore a
lower bound



Extra: Lagrangian Duality and KKT conditions

@ The dual function yields lower bound for minimizer of the
primal formulation.
e Max of dual function L*(\, i) over (\, ) is also therefore a
lower bound
max L*(A, p) = max min L(w, A\, ) < L(w, A\, p)
W) A W
@ Duality Gap: The gap between primal and dual solutions. In
the KKT conditions, w correspond to primal optimal and
(5\, fi) to dual optimal points = Duality gap is f(W) — L*(S\,,&)
@ Duality gap characterizes suboptimality of the solution and
can be approximated by f(w) — L*(\, ) for any feasible w
and corresponding A and p



Extra: Lagrangian Duality and KKT conditions

The dual function yields lower bound for minimizer of the
primal formulation.
Max of dual function L*(\, p) over (A, p) is also therefore a
lower bound

max L*(A, p) = max min L(w, A\, ) < L(w, A\, p)

W) A W
Duality Gap: The gap between primal and dual solutions. In
the KKT conditions, w correspond to primal optimal and
(5\, fi) to dual optimal points = Duality gap is f(W) — L*(S\,,&)
Duality gap characterizes suboptimality of the solution and
can be approximated by f(w) — L*(\, ) for any feasible w
and corresponding A and p
When functions f and g;, Vi € [1, m] are convex and
h;,Vj € [1, p] are affine, Karush-Kuhn-Tucker (KKT)
conditions are both necessary and sufficient for points to be
both primal and dual optimal with zero duality gap.



Support Vector Regression and its Dual

Instructor: Prof. Ganesh Ramakrishnan



KKT and Dual for SVR

; 1 2 *
°  in. 3 W+ €& + &)

s.t. Vi,
yi—w o(xj) —b<e+&,
b+wlo(xi) -y <e+éf,
i, & >0
@ Let's consider the lagrange multipliers «;, o, p; and 7
corresponding to the above-mentioned constraints.

@ The Lagrange Function is



KKT and Dual for SVR

; 1 2 *
°  in. 3 W+ €& + &)

s.t. Vi,
yi—w o(xj) —b<e+&,
b+wlo(xi) -y <e+éf,
i, & >0
@ Let's consider the lagrange multipliers «;, o, p; and 7
corresponding to the above-mentioned constraints.

@ The Lagrange Function is L(w, a, o™, p, u*) =

LIPS+ o (v - wTolx) b e~ &)+
i i=1

Z o (b +w(x;)—yi—e— 5?) - Z pi&i — Z i &f
i=1 i=1 i=1



KKT conditions for SVR
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KKT conditions for SVR

Lw, 0%, 1, 1%) = - [wl? ICEE) +Za,(y, wio(x) —b—e—&)+

m

Saf (b+wTéx) —yi—e—&7) - Zﬂfl S uie
i=1

i=1
o Differentiating the Lagranglan w.r.t. w,
m
w — a;p(x;) + afp(xi) =0 ie, w=> (aj — af)p(x)
i=1
o Differentiating the Lagrangian w.r.t. &;,
C—aij—pi=0ie,aj+pu=C
o Differentiating the Lagrangian w.r.t £,

af +pu; =C
o Differentiating the Lagrangian w.r.t b,
>ilaf —a;)=0

@ Complimentary slackness:
a,-(y; - qub(x,') —b—€— 5,) =0 AND ;L,'é,' =0 AND
af(b+wlo(x;) —y; —e—£&)=0AND pi& =



Conclusions from the KKT conditions:

aj € (O, C) =7

aj €(0,C) =7

1



KKT conditions

o Differentiating the Lagrangian w.r.t. w,
w — ajp(x;) + afo(x;) =0
e. w=>".(aj — al)p(xi)

o Differentiating the Lagrangian w.r.t. &;,
C—aj—puj=0
ie. aj+pi=C

e Differentiating the Lagrangian w.r.t &,
af +pui =C

o Differentiating the Lagrangian w.r.t b,
> (e —aj) =0

o Complimentary slackness:
ai(yi —w'o(x;)) —b—e—¢&)=0

pi&i =0
aj(b+wlo(xi)—yi—e—£&) =0
pi& =0



Conclusions from the KKT conditions:

ailyi—w'o(x)) —b—e—&)=0
and
aj(b+w'g(x)—yj—e—¢&)=0

=7



Conclusions from the KKT conditions:

a; € (0, C) =7

(C — Oé,')f,' =0=7

aj €(0,C) =7

(C—ai)g =0=7



For Support Vector Regression, since the original objective and the
constraints are convex, any (w, b, a, a*, u, p*, €, £*) that satisfy
the necessary KKT conditions gives optimality (conditions are also
sufficient)



Some observations

o aj,a; >0, pjypu; >0, aj +pj=Cand of +pu; = C
Thus, aj, pi, af, pwi € [0, C], Vi
e lf0<a;<C, then0< < C
(as aj + pj = C)
o pi&i=0and a;(yi—w'¢(x;)) —b—e—§&)=0are
complementary slackness conditions
Sol0<a;< C:>f,-:Oandy,-—wTd)(x,-)—b:e+§,-:e
o All such points lie on the boundary of the € band
e Using any point x; (that is with «; € (0, C)) on margin, we
can recover b as:
b=y —wlo(x;) —e



