Introduction to Machine Learning - CS725 Instructor: Prof. Ganesh Ramakrishnan Lecture 12 - KKT Conditions, Duality, SVR Dual

 The general optimization problem we consider with (convex) inequality and (linear) equality constraints is:

$$\min_{\mathbf{w}} f(\mathbf{w})$$
 subject to $g_i(\mathbf{w}) \leq 0; 1 \leq i \leq m$ $h_i(\mathbf{w}) = 0; 1 < j < p$

• Here, $\mathbf{w} \in \mathbb{R}^n$ and the domain is the intersection of all functions. Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{i=1}^{p} \mu_i h_j(\mathbf{w})$$

• Here, $\mathbf{w} \in \mathbb{R}^n$ and the domain is the intersection of all functions. Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

- KKT necessary conditions for all differentiable functions (i.e. f, g_i, h_j) with optimality points $\hat{\mathbf{w}}$ and $(\hat{\lambda}, \hat{\mu})$ are:
 - $\nabla f(\hat{\mathbf{w}}) + \sum_{i=1}^{m} \hat{\lambda}_i \nabla g_i(\hat{\mathbf{w}}) + \sum_{j=1}^{p} \hat{\mu}_j \nabla h_j(\hat{\mathbf{w}}) = 0$
 - $g_i(\hat{\mathbf{w}}) \leq 0; 1 \leq i \leq m$
 - $\hat{\lambda}_i \geq 0$; $1 \leq i \leq m$
 - $\hat{\lambda}_i g_i(\hat{\mathbf{w}}) = 0; 1 \leq i \leq m$
 - $h_j(\hat{\mathbf{w}}) = 0; 1 \le j \le p$

• Here, $\mathbf{w} \in \mathbb{R}^n$ and the domain is the intersection of all functions. Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

• KKT necessary conditions for all differentiable functions (i.e. f, g_i, h_j) with optimality points $\hat{\mathbf{w}}$ and $(\hat{\lambda}, \hat{\mu})$ are:

•
$$\nabla f(\hat{\mathbf{w}}) + \sum_{i=1}^{m} \hat{\lambda}_i \nabla g_i(\hat{\mathbf{w}}) + \sum_{j=1}^{p} \hat{\mu}_j \nabla h_j(\hat{\mathbf{w}}) = 0$$

- $g_i(\hat{\mathbf{w}}) \leq 0; 1 \leq i \leq m$
- $\hat{\lambda}_i \geq 0$; $1 \leq i \leq m$
- $\hat{\lambda}_i g_i(\hat{\mathbf{w}}) = 0; 1 \leq i \leq m$
- $h_j(\hat{\mathbf{w}}) = 0; 1 \le j \le p$
- When f and $g_i, \forall i \in [1, m]$ are convex and $h_j, \forall j \in [1, p]$ are affine, KKT conditions are also **sufficient** for optimality at $\hat{\mathbf{w}}$ and $(\hat{\lambda}, \hat{\mu})$

Lagrangian Duality and KKT conditions

• With $\mathbf{w} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p$, Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

Lagrange dual function is minimum of Lagrangian over w.

Lagrangian Duality and KKT conditions

• With $\mathbf{w} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p$, Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

Lagrange dual function is minimum of Lagrangian over w.

$$L^*(\lambda,\mu) = \min_{\mathbf{w}} L(\mathbf{w},\lambda,\mu)$$

• The Dual Optimization Problem is to maximize Lagrange dual function $L^*(\lambda,\mu)$ over (λ,μ)

Lagrangian Duality and KKT conditions

• With $\mathbf{w} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p$, Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

Lagrange dual function is minimum of Lagrangian over w.

$$L^*(\lambda,\mu) = \min_{\mathbf{w}} L(\mathbf{w},\lambda,\mu)$$

• The Dual Optimization Problem is to maximize Lagrange dual function $L^*(\lambda, \mu)$ over (λ, μ)

$$\underset{\lambda,\mu}{\operatorname{argmax}} \ L^*(\lambda,\mu) = \underset{\lambda,\mu}{\operatorname{argmax}} \ \underset{\mathbf{w}}{\min} \ L(\mathbf{w},\lambda,\mu)$$

Extra: Lagrangian Duality and KKT conditions

- The dual function yields lower bound for minimizer of the primal formulation.
- Max of dual function $L^*(\lambda,\mu)$ over (λ,μ) is also therefore a lower bound

Extra: Lagrangian Duality and KKT conditions

- The dual function yields lower bound for minimizer of the primal formulation.
- Max of dual function $L^*(\lambda, \mu)$ over (λ, μ) is also therefore a lower bound

$$\max_{\lambda,\mu} \, L^*(\lambda,\mu) = \max_{\lambda,\mu} \, \min_{\mathbf{w}} \, L(\mathbf{w},\lambda,\mu) \leq L(\mathbf{w},\lambda,\mu)$$

- **Duality Gap:** The gap between primal and dual solutions. In the KKT conditions, $\hat{\mathbf{w}}$ correspond to primal optimal and $(\hat{\lambda}, \hat{\mu})$ to dual optimal points \Rightarrow Duality gap is $f(\hat{\mathbf{w}}) L^*(\hat{\lambda}, \hat{\mu})$
- Duality gap characterizes suboptimality of the solution and can be approximated by $f(\mathbf{w}) L^*(\lambda, \mu)$ for any feasible \mathbf{w} and corresponding λ and μ

Extra: Lagrangian Duality and KKT conditions

- The dual function yields lower bound for minimizer of the primal formulation.
- Max of dual function $L^*(\lambda, \mu)$ over (λ, μ) is also therefore a lower bound

$$\max_{\lambda,\mu} \, L^*(\lambda,\mu) = \max_{\lambda,\mu} \, \min_{\mathbf{w}} \, L(\mathbf{w},\lambda,\mu) \leq L(\mathbf{w},\lambda,\mu)$$

- **Duality Gap:** The gap between primal and dual solutions. In the KKT conditions, $\hat{\mathbf{w}}$ correspond to primal optimal and $(\hat{\lambda}, \hat{\mu})$ to dual optimal points \Rightarrow Duality gap is $f(\hat{\mathbf{w}}) L^*(\hat{\lambda}, \hat{\mu})$
- Duality gap characterizes suboptimality of the solution and can be approximated by $f(\mathbf{w}) L^*(\lambda, \mu)$ for any feasible \mathbf{w} and corresponding λ and μ
- When functions f and $g_i, \forall i \in [1, m]$ are convex and $h_j, \forall j \in [1, p]$ are affine, Karush-Kuhn-Tucker (KKT) conditions are both necessary and sufficient for points to be both primal and dual optimal with zero duality gap.

Support Vector Regression and its Dual Instructor: Prof. Ganesh Ramakrishnan

KKT and Dual for SVR

$$\begin{aligned} & \min_{\mathbf{w}, b, \xi_i, \xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*) \\ & \text{s.t. } \forall i, \\ & y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \leq \epsilon + \xi_i, \\ & b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i \leq \epsilon + \xi_i^*, \\ & \xi_i, \xi_i^* \geq 0 \end{aligned}$$

- Let's consider the lagrange multipliers α_i , α_i^* , μ_i and μ_i^* corresponding to the above-mentioned constraints.
- The Lagrange Function is

KKT and Dual for SVR

- $\begin{aligned} & \min_{\mathbf{w}, b, \xi_i, \xi_i^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*) \\ & \text{s.t. } \forall i, \\ & y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \leq \epsilon + \xi_i, \\ & b + \mathbf{w}^\top \phi(\mathbf{x}_i) y_i \leq \epsilon + \xi_i^*, \\ & \xi_i, \xi_i^* \geq 0 \end{aligned}$
- Let's consider the lagrange multipliers α_i , α_i^* , μ_i and μ_i^* corresponding to the above-mentioned constraints.
- The Lagrange Function is $L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i (\xi_i + \xi_i^*) + \sum_{i=1}^m \alpha_i \left(y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \epsilon \xi_i \right) + \sum_{i=1}^m \alpha_i^* \left(b + \mathbf{w}^\top \phi(\mathbf{x}_i) y_i \epsilon \xi_i^* \right) \sum_{i=1}^m \mu_i \xi_i \sum_{i=1}^m \mu_i^* \xi_i^*$

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

• Differentiating the Lagrangian w.r.t. w,

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e., $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e., $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

- Differentiating the Lagrangian w.r.t. ξ_i , $C \alpha_i \mu_i = 0$ i.e., $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t ξ_i^* ,

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e., $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

- Differentiating the Lagrangian w.r.t. ξ_i , $C \alpha_i \mu_i = 0$ i.e., $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t ξ_i^* , $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b,

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e., $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

- Differentiating the Lagrangian w.r.t. ξ_i , $C \alpha_i \mu_i = 0$ i.e., $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t ξ_i^* , $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b, $\sum_{i} (\alpha_{i}^{*} \alpha_{i}) = 0$
- Complimentary slackness:

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e., $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

- Differentiating the Lagrangian w.r.t. ξ_i , $C \alpha_i \mu_i = 0$ i.e., $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t ξ_i^* , $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b, $\sum_{i} (\alpha_{i}^{*} \alpha_{i}) = 0$
- Complimentary slackness:

$$\alpha_i(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) = 0 \text{ AND } \mu_i \xi_i = 0 \text{ AND } \alpha_i^* (b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^*) = 0 \text{ AND } \mu_i^* \xi_i^* = 0$$

Conclusions from the KKT conditions:

$$\alpha_i \in (0, C) \Rightarrow ?$$

$$\alpha_i^* \in (0, C) \Rightarrow ?$$

KKT conditions

- Differentiating the Lagrangian w.r.t. \mathbf{w} , $\mathbf{w} \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$ i.e. $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$
- Differentiating the Lagrangian w.r.t. ξ_i , $C \alpha_i \mu_i = 0$ i.e. $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t ξ_i^* , $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b, $\sum_{i}^{m} (\alpha_{i}^{*} \alpha_{i}) = 0$
- Complimentary slackness: $\alpha_i(y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i) = 0$ $\mu_i \xi_i = 0$ $\alpha_i^* (b + \mathbf{w}^{\top} \phi(\mathbf{x}_i) y_i \epsilon \xi_i^*) = 0$ $\mu_i^* \xi_i^* = 0$

Conclusions from the KKT conditions:

$$\alpha_i(y_i - \mathbf{w}^{\top}\phi(\mathbf{x}_i) - b - \epsilon - \xi_i) = 0$$

and

$$\alpha_i^*(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^*) = 0$$

 \Rightarrow ?

Conclusions from the KKT conditions:

$$\alpha_i \in (0, C) \Rightarrow ?$$

$$(C - \alpha_i)\xi_i = 0 \Rightarrow ?$$

$$\alpha_i^* \in (0, C) \Rightarrow ?$$

$$(C - \alpha_i^*)\xi_i^* = 0 \Rightarrow ?$$

For Support Vector Regression, since the original objective and the constraints are convex, any $(\mathbf{w},b,\alpha,\alpha^*,\mu,\mu^*,\xi,\xi^*)$ that satisfy the necessary KKT conditions gives optimality (conditions are also sufficient)

Some observations

- $\alpha_i, \alpha_i^* \ge 0$, $\mu_i, \mu_i^* \ge 0$, $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$ Thus, $\alpha_i, \mu_i, \alpha_i^*, \mu_i^* \in [0, C]$, $\forall i$
- If $0 < \alpha_i < C$, then $0 < \mu_i < C$ (as $\alpha_i + \mu_i = C$)
- $\mu_i \xi_i = 0$ and $\alpha_i (y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i) = 0$ are complementary slackness conditions So $0 < \alpha_i < C \Rightarrow \xi_i = 0$ and $y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b = \epsilon + \xi_i = \epsilon$
 - \bullet All such points lie on the boundary of the ϵ band
 - Using any point \mathbf{x}_j (that is with $\alpha_j \in (0, C)$) on margin, we can recover b as:

$$b = y_j - \mathbf{w}^\top \phi(\mathbf{x}_j) - \epsilon$$