Introduction to Machine Learning - CS725 Instructor: Prof. Ganesh Ramakrishnan Lecture 13 - KKT Conditions, Duality, SVR Dual

KKT conditions for SVR

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1$$

 $\sum_{i=1}^{m} \alpha_{i}^{*} \left(b + \mathbf{w}^{\top} \phi(\mathbf{x}_{i}) - y_{i} - \epsilon - \xi_{i}^{*} \right) - \sum_{i=1}^{m} \mu_{i} \xi_{i} - \sum_{i=1}^{m} \mu_{i}^{*} \xi_{i}^{*}$ • Differentiating the Lagrangian w.r.t. \mathbf{w} ,

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e., $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

- Differentiating the Lagrangian w.r.t. ξ_i , $C \alpha_i \mu_i = 0$ i.e., $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t ξ_i^* $\alpha_i^* + \mu_i^* = C$ y_i $\omega_i^* \in (0, c)$
- Differentiating the Lagrangian w.r.t \vec{b} , \vec{b} - \vec{c} - $\vec{\xi}$:• $\sum_{i}(\alpha_{i}^{*}-\alpha_{i})=0$
- Complimentary slackness: $\alpha_i(y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \epsilon \xi_i) = 0 \text{ AND } \mu_i \xi_i = 0 \text{ AND } -\mathbf{b} \mathbf{e} = 0$ $\alpha_i^*(b + \mathbf{w}^\top \phi(\mathbf{x}_i) y_i \epsilon \xi_i^*) = 0 \text{ AND } \mu_i^* \xi_i^* = 0$

&E(0,C)

Dual variables

For Support Vector Regression, since the original objective and the constraints are convex, any $(\mathbf{w}, b, \alpha, \alpha^*, \mu, \mu^*, \xi, \xi^*)$ that satisfy the necessary KKT conditions gives optimality (conditions are also sufficient)

Primal variables

Some observations

- $\alpha_i, \alpha_i^* \geq 0$, $\mu_i, \mu_i^* \geq 0$, $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$ Thus, $\alpha_i, \mu_i, \alpha_i^*, \mu_i^* \in [0, C]$, $\forall i$
- If $0 < \alpha_i < C$, then $0 < \mu_i < C$ (as $\alpha_i + \mu_i = C$)
- $\mu_i \xi_i = 0$ and $\alpha_i (y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i) = 0$ are complementary slackness conditions So $0 < \alpha_i < C \Rightarrow \xi_i = 0$ and $y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b = \epsilon + \xi_i = \epsilon$
 - ullet All such points lie on the boundary of the ϵ band
 - Using any point \mathbf{x}_j (that is with $\alpha_j \in (0, C)$) on margin, we can recover b as: $b = y_j \mathbf{w}^\top \phi(\mathbf{x}_j) \epsilon$

Support Vector Regression Dual Objective

Constraint penalty multipliers = lagrange multipliers
$$L^*(\alpha, \alpha^*, \mu, \mu^*) = \min_{\mathbf{w}, b, \xi, \xi^*} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$$
By weak duality theorem, we have:
$$\min_{\mathbf{w}, b, \xi, \xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \ge L^*(\alpha, \alpha^*, \mu, \mu^*)$$

$$\min_{\substack{\mathbf{w},b,\xi,\xi^* \\ \mathbf{w},b,\xi,\xi^* \\ \mathbf{s.t.}} } \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \ge L^*(\alpha,\alpha^*,\mu,\mu^*)$$

$$\mathbf{s.t.} \ y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \le \epsilon - \xi_i, \text{ and }$$

$$\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i \le \epsilon - \xi_i^*, \text{ and }$$

$$\xi_i,\xi^* \ge 0, \ \forall i=1,\dots,n$$

- igcep The above is true for any $lpha_i, lpha_i^* \geq 0$ and $\mu_i, \mu_i^* \geq 0$
- Thus,

LHS
$$\geq \max_{\alpha_i,\alpha_i,\alpha_i,\alpha_i} L^*(\alpha,\alpha_i,\alpha_i,\alpha_i)$$

If $J(\alpha) \geq g(y) \quad \forall x,y \Rightarrow J(x) \geq \max_{\alpha} g(y)$

Weak Duality

- $L^*(\alpha, \alpha^*, \mu, \mu^*) = \min_{\mathbf{w}, b, \xi, \xi^*} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$
- By weak duality theorem, we have: $\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \ge L^*(\alpha,\alpha^*,\mu,\mu^*)$ s.t. $y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \le \epsilon \xi_i$, and $\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \le \epsilon \xi_i^*, \text{ and}$ $\xi_i,\xi^* > 0, \ \forall i=1,\ldots,n$
- The above is true for any $\alpha_i, \alpha_i^* \geq 0$ and $\mu_i, \mu_i^* \geq 0$
- Thus,

$$\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} (\xi_i + \xi_i^*) \ge \max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$

s.t.
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon - \xi_i$$
, and $\mathbf{w}^{\top} \phi(\mathbf{x}_i) + b - y_i \leq \epsilon - \xi_i^*$, and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \dots, n$

Dual objective

- $\bullet \ L^*(\alpha,\alpha^*,\mu,\mu^*) = \min_{\mathbf{w},b,\xi,\xi^*} \ L(\mathbf{w},b,\xi,\xi^*,\alpha,\alpha^*,\mu,\mu^*)$
- Assume: In case of SVR, we have a strictly convex objective and linear constraints ⇒ KKT conditions are necessary and sufficient and strong duality holds:

$$\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) = \max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$

s.t.
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon - \xi_i$$
, and $w^{\top} \phi(\mathbf{x}_i) + b - y_i \leq \epsilon - \xi_i^*$, and $\xi_i, \xi^* \geq 0, \ \forall i = 1, \dots, n$

- This value is precisely obtained at the $(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$ that satisfies the necessary (and sufficient) KKT optimality
 - conditions
- Given strong duality, we can equivalently solve (RNS) 4 simply $\max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$

$$L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) + \sum_{i=1}^m (\alpha_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i - \epsilon - \xi_i^*) - \sum_{i=1}^m (\mu_i \xi_i + \mu_i^* \xi_i^*)$$

We obtain \mathbf{w} , b, ξ_i , ξ_i^* in terms of α , α^* , μ and μ^* by using the KKT conditions derived earlier as $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

and
$$\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0$$
 and $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$

- Thus, we get: ([(d,d'M,M') projected along KKT 12 simplified as it should appear at optimality)
- -ie simplified as it should appear at by the simplified as it should appear at a simplified at by the simpli

min
$$f(x,y) = ?$$

If I knew that at optimal $x,y,y,y,y' = g(x)$

min $f(x,y) = \min_{x,y} f(x,g(x))$

X,y

Projecting $f(x,y)$ on constraint $(y=g(x))$

This does not mean that $f(x,y) = f(x,g(x))$
 $y' = g$

[argmin $f(x,y) = ?$

argmin $f(x,y) = ?$

•
$$L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) + \sum_{i=1}^m (\alpha_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i - \epsilon - \xi_i^*) + \sum_{i=1}^m (\mu_i \xi_i + \mu_i^* \xi_i^*)$$

• We obtain \mathbf{w} , b, ξ_i , ξ_i^* in terms of α , α^* , μ and μ^* by using the KKT conditions derived earlier as $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

and
$$\sum_{i=1}^{\infty} (\alpha_i - \alpha_i^*) = 0$$
 and $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$

• Thus, we get:

$$L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \sum_{i} \sum_{j} (\alpha_{i} - \alpha_{i}^{*})(\alpha_{j} - \alpha_{j}^{*}) \phi^{\top}(\mathbf{x}_{i}) \phi(\mathbf{x}_{j}) + \sum_{i} (\xi_{i}(C - \alpha_{i}^{*} = \mu_{i}) + \xi_{i}^{*}(C - \alpha_{i}^{*} - \mu_{i}^{*})) - b \sum_{i} (\alpha_{i} - \alpha_{i}^{*}) - \epsilon \sum_{i} (\alpha_{i} + \alpha_{i}^{*}) + \sum_{i} y_{i}(\alpha_{i} - \alpha_{i}^{*}) = \sum_{i} \sum_{j} (\alpha_{i} - \alpha_{i}^{*})(\alpha_{j} - \alpha_{j}^{*}) \phi^{\top}(\mathbf{x}_{i}) \phi(\mathbf{x}_{j}) = \frac{1}{2} \sum_{i} \sum_{j} (\kappa_{i} - \kappa_{i}^{*}) (\kappa_{j} - \kappa_{i}^{*}) - \epsilon \sum_{i} (\kappa_{i} + \alpha_{i}^{*}) - \epsilon \sum_{i} (\kappa_{i}$$

୬୧୯

• $L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) +$ $\sum_{i=1}^{m} \left(\alpha_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i - \epsilon - \xi_i^*) \right)$

$$\sum_{i=1}^{m} (\mu_i \xi_i + \mu_i^* \xi_i^*)$$
• We obtain \mathbf{w} , b , ξ_i , ξ_i^* in terms of α , α^* , μ and μ^* by using the KKT conditions derived earlier as $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

and $\sum_{i=1}^{\infty} (\alpha_i - \alpha_i^*) = 0$ and $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$

• Thus, we get:
$$L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$$

$$= \frac{1}{2} \sum_{i} \sum_{j} (\alpha_{i} - \alpha_{i}^{*})(\alpha_{j} - \alpha_{j}^{*}) \phi^{\top}(\mathbf{x}_{i}) \phi(\mathbf{x}_{j}) +$$

$$\sum_{i} (\xi_{i}(C - \alpha_{i} - \mu_{i}) + \xi_{i}^{*}(C - \alpha_{i}^{*} - \mu_{i}^{*})) - b \sum_{i} (\alpha_{i} - \alpha_{i}^{*}) -$$

$$\epsilon \sum_{i} (\alpha_{i} + \alpha_{i}^{*}) + \sum_{i} y_{i}(\alpha_{i} - \alpha_{i}^{*}) - \sum_{i} \sum_{j} (\alpha_{i} - \alpha_{i}^{*})(\alpha_{j} - \alpha_{i}^{*})$$

$$= \frac{1}{2} \sum_{i} \sum_{j} (\alpha_{i} - \alpha_{i})(\alpha_{j} - \alpha_{j}) \phi^{*}(\mathbf{x}_{i}) \phi(\mathbf{x}_{j}) + \sum_{i} (\xi_{i}(C - \alpha_{i} - \mu_{i}) + \xi_{i}^{*}(C - \alpha_{i}^{*} - \mu_{i}^{*})) - b \sum_{i} (\alpha_{i} - \alpha_{i}^{*}) - \epsilon \sum_{i} (\alpha_{i} + \alpha_{i}^{*}) + \sum_{i} y_{i}(\alpha_{i} - \alpha_{i}^{*}) - \sum_{i} \sum_{j} (\alpha_{i} - \alpha_{i}^{*})(\alpha_{j} - \alpha_{i}^{*}) \phi^{T}(\mathbf{x}_{i}) \phi(\mathbf{x}_{j})$$

$$= -\frac{1}{2} \sum_{i} \sum_{j} (\alpha_{i} - \alpha_{i}^{*})(\alpha_{j} - \alpha_{j}^{*}) \phi^{T}(\mathbf{x}_{i}) \phi(\mathbf{x}_{j}) - \epsilon \sum_{i} (\alpha_{i} + \alpha_{i}^{*}) + \sum_{i} y_{i}(\alpha_{i} - \alpha_{i}^{*}) \longrightarrow \text{Logrange clus}$$

$$\downarrow \text{Constant } \text{KKT}$$

Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

```
\mathbf{w} = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow the final decision function
\mathbf{w} = \sum_{i=1}^{i} (\alpha_i - \alpha_i) \phi(\mathbf{x}_i) \Rightarrow \text{ the final decision function}
f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j - \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) - \epsilon
\mathbf{x}_j \text{ is any point with } \alpha_j \in (0, C). \text{ Recall similarity with}
\mathbf{Quiz 1} \quad \mathbf{problem 1}
```

Kernel function: $K(\mathbf{x}_i, \mathbf{x}_i) = \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_i)$

• $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi(x_i) \Rightarrow$ the final decision function $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b =$ $\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi^{\mathsf{T}}(\mathbf{x}_i) \phi(\mathbf{x}) + y_i - \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi^{\mathsf{T}}(\mathbf{x}_i) \phi(\mathbf{x}_i) - \epsilon$ \mathbf{x}_i is any point with $\alpha_i \in (0, C)$. Recall similarity with kernelized expression for Ridge Regression

• The dual optimization problem to compute the α 's for SVR is:

My projection surface $\{t(\omega, \xi, \cdot \cdot) = 0, u(d, \alpha^{\circ}) = 0\}$ Constraints involving constraints Primal 4 dual involving only dual

Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$ the final decision function $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon$ \mathbf{x}_j is any point with $\alpha_j \in (0, C)$. Recall similarity with kernelized expression for Ridge Regression
- The dual optimization problem to compute the α 's for SVR is:

$$\begin{aligned} \max_{\alpha_{i},\alpha_{i}^{*}} &- \frac{1}{2} \sum_{i} \sum_{j} (\alpha_{i} - \alpha_{i}^{*}) (\alpha_{j} - \alpha_{j}^{*}) \phi^{\top}(\mathbf{x}_{i}) \phi(\mathbf{x}_{j}) \\ &- \epsilon \sum_{i} (\alpha_{i} + \alpha_{i}^{*}) + \sum_{i} y_{i} (\alpha_{i} - \alpha_{i}^{*}) \end{aligned}$$

s.t.

•
$$\sum_{i}(\alpha_{i}-\alpha_{i}^{*})=0$$

- $\alpha_i, \alpha_i^* \in [0, C]$
- We notice that the only way these three expressions involve ϕ is through $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)=K(\mathbf{x}_i,\mathbf{x}_j)$, for some i,j

Recap from Quiz 1: Kernelizing Ridge Regression

- Given $w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$ and using the identity $(P^{-1} + B^T R^{-1} B)^{-1} B^T R^{-1} = PB^T (BPB^T + R)^{-1}$
 - $\Rightarrow w = \Phi^T (\Phi \Phi^T + \lambda I)^{-1} y = \sum_{i=1}^m \alpha_i \phi(x_i)$ where $\alpha_i = ((\Phi \Phi^T + \lambda I)^{-1} y)_i$
 - \Rightarrow the final decision function $f(\mathbf{x}) = \phi^T(\mathbf{x})\mathbf{w} = \sum_{i=1}^m \alpha_i \phi^T(\mathbf{x})\phi(\mathbf{x}_i)$
- Again, We notice that the only way the decision function $f(\mathbf{x})$ involves ϕ is through $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$, for some i,j

The Kernel function

- We call $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$ a kernel function: $K(\mathbf{x}_i, \mathbf{x}_i) = \phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_i)$
- The Kernel Trick: For some important choices of ϕ , compute $K(\mathbf{x}_i, \mathbf{x}_j)$ directly and more efficiently than having to explicitly compute/enumerate $\phi^{(\mathbf{x}_i)}$ and $\phi(\mathbf{x}_i)$
- The expression for decision function becomes $f(x) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$
- Computation of α_i is specific to the objective function being minimized: Closed form exists for Ridge regression but NOT for SVR

Back to the Kernelized version of SVR

• The kernelized dual problem:

$$\max_{\alpha_i,\alpha_i^*} -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(\mathbf{x}_i, \mathbf{x}_j)$$
$$-\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$

s.t.

•
$$\sum_{i}(\alpha_i - \alpha_i^*) = 0$$

•
$$\alpha_i, \alpha_i^* \in [0, C]$$

• The kernelized decision function:

$$f(\mathbf{x}) = \sum_{i} (\alpha_{i} - \alpha_{i}^{*}) K(\mathbf{x}_{i}, \mathbf{x}) + b$$

• Using any point x_j with $\alpha_j \in (0, C)$: $b = y_j - \sum_i (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}_j)$

• Computing $K(\mathbf{x}_1, \mathbf{x}_2)$ often does not even require computing $\phi(\mathbf{x}_1)$ or $\phi(\mathbf{x}_2)$ explicitly

Basis function expansion and the Kernel trick

We started off with the functional form¹

$$f(\mathbf{x}) = \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$

Each ϕ_j is called a *basis function* and this representation is called *basis function expansion*²

And we landed up with an equivalent

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

for Ridge regression and Support Vector Regression

• Aside: For $p \in [0, \infty)$, with what K, kind of regularizers, loss functions, *etc.*, will these dual representations hold?³

 $^{^1{\}rm The}$ additional b term can be either absorbed in ϕ or kept separate as discussed on several occasions.

²Section 2.8.3 of Tibshi

³Section 5.8.1 of Tibshi.

An Example Kernel

- Let $K(\mathbf{x}_1, \mathbf{x}_2) = (1 + \mathbf{x}_1^{\top} \mathbf{x}_2)^2$
- What $\phi(\mathbf{x})$ will give $\phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2) = K(\mathbf{x}_1,\mathbf{x}_2) = (1+\mathbf{x}_1^{\top}\mathbf{x}_2)^2$

Assume:
$$x_1 = \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix}$$

• Is such a
$$\phi$$
 guaranteed to exist? \rightarrow A ϕ mapping end in the such a ϕ for given ϕ in the such a ϕ mapping in the such as ϕ mapping in the such as

An Example Kernel

- ullet We can prove that such a ϕ exists
- For example, for a 2-dimensional x_i :

$$\phi(\mathbf{x}_{i}) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ x_{i1}\sqrt{2} & x_{j1}\sqrt{2} & x_{j1}\sqrt{2} & x_{j2}\sqrt{2} \\ x_{i2}\sqrt{2} & x_{j1}x_{j2}\sqrt{2} & x_{j1}x_{j2}\sqrt{2} \\ x_{i1}^{2} & x_{i2}^{2} & x_{j1}^{2} & x_{j2}^{2} & x_{j2}^{2} & x_{j2}^{2} \\ x_{i2}^{2} & x_{i2}^{2} & x_{j2}^{2} & x_{j2}^{2} & x_{j2}^{2} \end{bmatrix}$$

- $\phi(\mathbf{x}_i)$ exists in a 5-dimensional space
- But, to compute $K(\mathbf{x}_1, \mathbf{x}_2)$, all we need is $x_1^\top x_2$ without having to enumerate $\phi(\mathbf{x}_i)$

We need a frick to prove that & exists without having to enumerat it!

More on the Kernel Trick

- Kernels operate in a high-dimensional, implicit feature space without necessarily computing the coordinates of the data in that space, but rather by simply computing the Kernel function
- This approach is called the "kernel trick" and will subsequently talk about valid kernels
- This operation is often computationally cheaper than the explicit computation of the coordinates
- Claim: If $K_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ are entries of an $n \times n$ Gram Matrix K then
 - \mathcal{K} must be positive semi-definite • Proof: $\mathbf{b}^T \mathcal{K} \mathbf{b} = \sum_{i,j} b_i \mathcal{K}_{ij} b_j = \sum_{i,j} b_i b_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$ $= \langle \sum_{i \neq i} b_i \phi(\mathbf{x}_i), \sum_{j \neq i} b_j \phi(\mathbf{x}_j) \rangle = || \sum_i b_i \phi(\mathbf{x}_i) ||_2^2 \ge 0$

Existence of basis expansion ϕ for symmetric K?

• Positive-definite kernel: For any dataset $\{x_1, x_2, \dots, x_m\}$ and for any m, the Gram matrix \mathcal{K} must be positive definite

$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

so that $\mathcal{K} = U\Sigma U^T = (U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T = RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix

eigendecomposition with $Z = \begin{bmatrix} \lambda_1 & \lambda_m \end{bmatrix}$

Not practical! But can we generalize this concept to virtually any set of

https://en.wikipedia.org/wiki/Mercer%27s_theorem

⁴Eigen-decomposition wrt linear operators. See

⁵That is, if every Cauchy sequence is convergent. • • • • • • • • • • • •

Existence of basis expansion ϕ for symmetric K?

• Positive-definite kernel: For any dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ and for any m, the Gram matrix \mathcal{K} must be positive definite

$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

so that $\mathcal{K} = U\Sigma U^T = (U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T = RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix

• Mercer kernel: Extending to eigenfunction decomposition⁴:

$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{j=1}^{\infty} \alpha_j \phi_j(\mathbf{x}_1) \phi_j(\mathbf{x}_2)$$
 where $\alpha_j \geq 0$ and
$$\sum_{j=1}^{\infty} \alpha_j^2 < \infty$$

 Mercer kernel and Positive-definite kernel turn out to be equivalent if the input space {x} is compact⁵

⁴Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s_theorem

Mercer's theorem

Mercer kernel: $K(\mathbf{x}_1/\mathbf{x}_2)$ is a Mercer kernel if $\iint K(\mathbf{x}_1,\mathbf{x}_2)g(\mathbf{x}_1)g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \geq 0$ for all square integrable functions $g(\mathbf{x})$ ($g(\mathbf{x})$ is square integrable iff $\int (g(\mathbf{x}))^2 dx$ is finite)

Mercer's theorem:

An implication of the theorem:

for any Mercer kernel $K(\mathbf{x}_1, \mathbf{x}_2)$, $\exists \phi(\mathbf{x}) : \mathbb{R}^n \mapsto H$,

s.t. $K(\mathbf{x}_1, \mathbf{x}_2) = \phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2)$

- where *H* is a *Hilbert space*⁶, the infinite dimensional version of the Eucledian space.
- Eucledian space: $(\Re^n, <.,.>)$ where <.,.> is the standard dot product in \Re^n
- Advanced: Formally, Hibert Space is an inner product space with associated norms, where every Cauchy sequence is convergent

⁶Do you know Hilbert? No? Then what are you doing in his space? 1)

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \ge 1)$

(x,"x2)d

- $= \begin{pmatrix} x_{11} x_{21} + x_{12} x_{22} x_{11} x_{21} \\ z \ge 0, & \downarrow & \downarrow \\ s g(x) & n_1 & n_2 & n_L \end{pmatrix}$ We want to prove that $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \geq 0$, for all square integrable functions $g(\mathbf{x})$
- Here, \mathbf{x}_1 and \mathbf{x}_2 are vectors s.t $\mathbf{x}_1, \mathbf{x}_2 \in \Re^t$
- Thus, $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$

$$= \int_{x_{11}} ... \int_{x_{1t}} \int_{x_{21}} ... \int_{x_{2t}} \left[\sum_{n_1...n_t} \frac{d!}{n_1!...n_t!} \prod_{j=1}^t (x_{1j}x_{2j})^{n_j} \right] g(x_1)g(x_2) dx_{11}...dx_{1t}dx_{21}...dx_{2t}$$

$$\text{s.t. } \sum_{i=1}^t n_i = d$$

$$(taking a leap)$$

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, \ d \geq 1)$

$$= \sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \prod_{j=1}^t (\underline{x_{1j}} \underline{x_{2j}})^{n_j} \underline{g(x_1)} \underline{g(x_2)} \, dx_1 dx_2$$

$$=\sum_{n_1...n_t}\frac{d!}{n_1!\ldots n_t!}\int_{\mathbf{x}_1}\int_{\mathbf{x}_2}(x_{11}^{n_1}x_{12}^{n_2}\ldots x_{1t}^{n_t})g(x_1)\left(x_{21}^{n_1}x_{22}^{n_2}\ldots x_{2t}^{n_t}\right)g(x_2)dx_1dx_2$$

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \geq 1)$

$$= \sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \prod_{i=1}^t (x_{1j} x_{2j})^{n_j} g(x_1) g(x_2) dx_1 dx_2$$

$$=\sum_{n_1...n_t}\frac{d!}{n_1!\ldots n_t!}\int_{\mathbf{x}_1}\int_{\mathbf{x}_2}(x_{11}^{n_1}x_{12}^{n_2}\ldots x_{1t}^{n_t})g(x_1)\underbrace{(x_{21}^{n_1}x_{22}^{n_2}\ldots x_{2t}^{n_t})g(x_2)}_{(x_{21}^{n_1}x_{22}^{n_2}\ldots x_{2t}^{n_t})g(x_2)}dx_1dx_2$$

$$=\sum_{n_1...n_t}\frac{d!}{n_1!\ldots n_t!}\left(\int_{\mathbf{x}_1}(x_{11}^{n_1}\ldots x_{1t}^{n_t})g(x_1)\,dx_1\right)\left(\int_{\mathbf{x}_2}(x_{21}^{n_1}\ldots x_{2t}^{n_t})g(x_2)\,dx_2\right)$$

(integral of decomposable product as product of integrals)

s.t.
$$\sum_{i=1}^{n} n_i = d$$

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \geq 1)$

- Realize that both the integrals are basically the same, with different variable names
- Thus, the equation becomes:

$$\sum_{n_1...n_t} \frac{d!}{n_1! \ldots n_t!} \left(\int_{\mathbf{x}_1} (x_{11}^{n_1} \ldots x_{1t}^{n_t}) g(x_1) \, dx_1 \right)^2 \geq 0$$

(the square is non-negative for reals)

ullet Thus, we have shown that $(\mathbf{x}_1^{ op}\mathbf{x}_2)^d$ is a Mercer kernel.

$$\iint (x_1^n x_2)^d g(x_2) g(x_2) dx_1 dx_2 \ge 0$$

•
$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^{r} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$

• Is
$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$
?

We have

$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(x_1) g(x_2) dx_1 dx_2 =$$

What about $\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ s.t. $\alpha_d \geq 0$?

•
$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^{r} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$

• Is
$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$
?

We have

$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(x_1) g(x_2) dx_1 dx_2 =$$

$$\sum_{d=1}^{r} \alpha_d \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$$

What about
$$\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$
 s.t. $\alpha_d \geq 0$?

- We have already proved that $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$
- Also, $\alpha_d \geq 0$, $\forall d$
- Thus,

$$\sum_{d=1}^{r} \alpha_d \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x} \mathbf{1}^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$

- By which, $K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d$ is a Mercer kernel.
- Examples of Mercer Kernels: Linear Kernel, Polynomial Kernel, Radial Basis Function Kernel

Kernels in SVR

- Recall: $\max_{\alpha_i,\alpha_i^*} \frac{1}{2} \sum_i \sum_j (\alpha_i \alpha_i^*) (\alpha_j \alpha_j^*) K(\mathbf{x}_i, \mathbf{x}_j) \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i \alpha_i^*)$ and the decision function: $f(x) = \sum_i (\alpha_i \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}) + b$
- One can now employ any mercer kernel in SVR or Ridge Regression to implicitly perform linear regression in higher dimensional spaces

are all in terms of the kernel $K(\mathbf{x}_i, \mathbf{x}_i)$ only