Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan

Lecture 13 - KKT Conditions, Duality, SVR Dual



KKT conditions for SVR
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For Support Vector Regression since #he &jginal objective and the
constraints are convex, any (w, b, o, a*, ju, i1, ,§ ) that satisfy

the necessary KKT conditions Xives optimality fconditions are also
sufficient)
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Some observations

o aj,a; >0, pjypuj >0, aj +pj=Cand o +pu; = C
Thus, aj, pj, af, pwi € [0, C], Vi
o lf0<a;<C, then0< ;< C
(as aj + pi = C)
o & =0and aj(y; —w' ¢(x;)) —b—e—¢&)=0are
complementary slackness conditions
Sol0<a;< C:>§,-:0and yi—WT¢(Xi)—b:€+§i:€
e All such points lie on the boundary of the € band
o Using any point x; (that is with ; € (0, C)) on margin, we
can recover b as:
b=y —wlo(x;) —e




Support Vector Regression
Dual Objective



Weak Duality
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Weak Duality

° L*(a7a*7l'l’7 /J/*) = wrplé_né_* L(W7 b7§)€*7a7 a*7u’/’l’*)

o By weak duality theorem, we have:
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st yi—w! ¢(x;) — b <e—¢&, and
wio(x;)+b—y <e— &*, and
£,6>0,Vi=1,...,n
@ The above is true for any o, >0 and pj, u;f >0
@ Thus,
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Dual objective

o L*(a,a™,p,p*) = min L(w,b,& & a,af, pu,p1*)

@ Assume: In case of SVR, we have a strictly convex objective
and linear constraints = KKT _conditions are necessary and

sufficient' and strong duality holds: o SA_ \ s;o-‘ _}*
D T e O g
> [k Lco'a‘
R =
min = |lw||*+ C i+&)= max L*(a, " p, p”
w,b,é,s*2” | Z(g &) NN ( 1)

i=1

st yi—w! ¢(x;) — b <e—¢&, and

wlé(x;)+b—y <e—¢&F and

&, >0, Vi=1,...,n

@ This value is precisely obtained at the (w, b, &, £*, o, o, i, )
0}5 Jthat satisfies the necessary (and sufficient) KKT optimality

}*é? conditions
V& e Given strong duality, we can equivalently solve (l“s) 4’5\'“)5‘5
& usng kKT

max L*(a, ", p, p*)
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° We obtamcw 5 & & in terms of a, o, 1 and w* by using
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°Ln(7 o pt) = 3w+ CM (& + &) +
> (ilyi —wTo(x;) = b—e— &)+ af(w o(x;) +b—y; —e—&)
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.Zl(“'g' "’.U, 5*)
1=
e We obtain w, b, &;, &£ in terms of o, a*, p and p* by using

m
the KKT conditions derived earlier as w = ) (aj — af)o(x;)
i=1
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and i(a;—a?)annd aj+pi=Candof+pi=C
° Thusl,:\llve get:
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°Ln(7 o pt) = 3w+ CM (& + &) +
> (ilyi —wTo(x;) = b—e— &)+ af(w o(x;) +b—y; —e—&)

m

.Zl(“'g' +N, 5*)
1=
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i=1
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@ Thus, we get:
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Kernel function: K(x;,x;) = ¢T(Xi)¢(xj)

N
W Go w=>" (ai—af)p(x;) = the final decision function
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Kernel function: K(x;,x;) = ¢T(Xi)¢(xj)

o w=> " (o —af)p(x;) = the final decision function
f(x) =wT¢(x)+ b=
(i =af)o T (x)o(x) +y; = S (i —af)o T (xi)o(x;) —e
x; is any point with a; € (0, C). Recall similarity with
kernelized expression for Ridge Regression
@ The dual optimization problem to compute the o's for SVRis:
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Kernel function: K(x;,x;) = ¢T(Xi)</5(xj)

o w=> " (o —af)p(x;) = the final decision function
f(x) =wT¢(x)+ b=
S (i —07)0 T (x)O(0) 4y~ S (0 — )6 T (xi)o(x))
x; is any point with a; € (0, C). Recall similarity with
kernelized expression for Ridge Regression

@ The dual optimization problem to compute the a's for SVR is:

1
MaXq; ar — 5 Z Z(Oéi - 04?)(041' - 047)¢T(Xi)¢(xj)
L W(x: 11:.0
—€ Z(a,- +ai)+ Zyi(ai —aj)
s.t

o Y (ai—af) =0

° a,-,oz,’f S [0, C]
@ We notice that the only way these three expressions
involve ¢ is through ¢ (x;)¢(x;) = K(x;,x;), for some i, j



Recap from Quiz 1: Kernelizing Ridge Regression

e Given w = (®7® + AI)"1® Ty and using the identity
(P14+BTR'B)"'1BTR™! = PBT(BPB"T + R)™!
o = w=0T(ddT 4 A)7Ly =37 a;¢(x;) where
a;p = (P67 + A1) ty),
e = the final decision function

f(x) =T (x)w = 375 cid " (x)o(x;)

e
@ Again, We notice that the only way the decision function

f(x) involves ¢ is through ¢ (x;)é(x;), for some i,



The Kernel function

o We call ¢ (x;)¢(x;) a kernel function:
K(xi,x;) = ¢ (x;)¢(x;)

@ The Kernel Trick: For some important choices of ¢, compute
K(xi,x;) directly and more efficiently than having to explicitly
compute/enumerate ¢(x;) and ¢(x;)

@ The expression for decision function becomes
F(x) = 2oLy aiK(x,x)

e Computation of q; is specific to the objective function being
minimized: Closed form exists for Ridge regression but NOT
for SVR

% golved \'Ec-mfhiclj unng Sevne Jvm ‘S’
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Back to the Kernelized version of SVR

@ The kernelized dual problem:

l * *
MaXa,; ar — 5 E E (i —f) (o — aj)K(x,-,xj)
i

—€> (ai+af)+ ) yilei —af)
1 1
s.t.
o > i(ai—af)=0
° a;,a,-* S [07 C]
@ The kernelized decision function:
f(x)=>(ai —af)K(xi,x) + b
@ Using any point x; with a; € (0, C):
b=y — > i(ei — af)K(xi,x})
e Computing K(x1,x2) often does not even require computing
o(x1) or ¢(x2) explicitly



Basis function expansion and the Kernel trick

o We started off with the functional form*
P
f(x) =) wioj(x)
j=1
Each ¢; is called a basis function and this representation is
called basis function expansion®
@ And we landed up with an equivalent

f(x) = Z a;iK(x,x;)
i=1

for Ridge regression and Support Vector Regression
e Aside: For p € [0,00), with what K, kind of regularizers, loss
functions, etc., will these dual representations hold?3

!The additional b term can be either absorbed in ¢ or kept separate as
discussed on several occasions.

2Section 2.8.3 of Tibshi

3Section 5.8.1 of Tibshi.




An Example Kernel

o Let K(x1,%2) = (1 + x{ x2)?

o What ¢(x) will give ¢ (x1)¢(x2) = K(x1,%2) = (1 + x{ x2)?
o Is such a ¢ guaranteed to exist? —» A ¢ WPPJ
@ |s there a unique ¢ for given K? 0 " o$f —> ﬂ

{ASS\Amc: ’121
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An Example Kernel

@ We can prove that such a ¢ exists

o For example for a 2-dimensional x;:

)
Xj \/_ -'.[ ﬁ-
o(x) = N i D () (14 % ‘D
X’l);li221,‘i dl J)J; = (-l"' Xi\xj| 2
L X,'22 » z; £ xizujz

@ ¢(x;) exists in a 5-dimensional space

o But, to compute K(x1,x2), all we need is x;' x, without

having to enumerate ¢(x;)

We T\tcA & \'-wck +b ']7fwr f}ha')' ? (’,msaa ,
whout haqu\j bo eranieval. it
o



target

Support Vector Regression

o
el

— RBF‘fmodel

— Linear model <

— Polynomial model |

T,
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eee data
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More on the Kernel Trick

o Kernels operate in a high-dimensional, implicit feature space
without necessarily computing the coordinates of the data in
that space, but rather by simply computing the Kernel
function

@ This approach is called the " kernel trick" and will
subsequently talk about valid kernels

@ This operation is often computationally cheaper than the
explicit computation of the coordinates
o Claim: If Kjj = K(x;,x;) = (¢(xi), ¢(x;)) are entries of an
n x n Gram Matrix K then
e I must be positive semi-definite

o Proof: bTICb—ZbICUb = bibi(p(xi), d(x;))
,J\.)"'\‘
ib,¢x, 7||Zb¢> Iz >0

J"|
~ J o
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Existence of basis expansion ¢ for symmetric K7

e Positive-definite kernel: For any dataset {x1,x2,...,Xm} and
for any m, the Gram matrix JC must be positive definite
K(x1,x1) K(x1,xn)
K= e f((x;,xj) e
K(Xm, X1) K(XmyXm)

so that K = USUT = (US2)(US2)T = RRT where rows of
U are linearly jndependent and X is a positive diagonal matrix

elaenoteca*ﬂros\hoﬂ wwvth Z‘;[D\(D‘ ~.a

& - Am2O
\\\0\' "?‘OC'\'\U‘\), uY can Wwe aﬂ'ﬁ"ﬂ\lzﬁ Hs
Gooce oY o vw\ui\b any set

*Eigen-decomposition wrt Iinear-operators. See i < .
https://en.wikipedia.org/wiki/Mercer27s_theorem
5That is, if every Cauchy sequence is convergent.




Existence of basis expansion ¢ for symmetric K7

e Positive-definite kernel: For any dataset {x1,x2,...,Xm} and
for any m, the Gram matrix JC must be positive definite

K(x1,x1) K(x1,xn)
K= K(X,’,Xj)
K(Xm, X1) K(XmyXm)

so that K = USUT = (US2)(US2)T = RRT where rows of
U are linearly independent and X is a positive diagonal matrix
o Mercer kernel: Extending to eigenfunction decomposition®

K(Xl,X2) = Zaj¢j(x1)¢j(x2) where Q; > 0 and
Jj=1
o8] 2

D joqaf <00
o Mercer kernel and Positive-definite kernel turn out to be

equivalent if the input space {x} is compact®
*Eigen-decomposition wrt linear operators. See

https://en.wikipedia.org/wiki/Mercer27s_theorem

5That is, if every Cauchy sequence is convergent.




K q_+ C ‘ \l}

Q Q\ Mércer kernel/((x‘é) is a Mercer kernel if
[ [ K(x1,%x2)g(x1)g(x2) dx1dx, > 0 for all square integrable
functions g(x)
(g(x) is square integrable iff [(g(x))? dx is finite)
e Mercer’'s theorem:
An implication of the theorem:
for any Mercer kernel K(x1,x2), 3¢(x) : R" — H,
. K(x1,%2) = ¢ (x1)é(x2)
o where H is a Hilbert space6, the infinite dimensional version of

the Eucledian space.
o Eucledian space: (R",< .,.>) where < .,. > is the standard

dot product in "
e Advanced: Formally, Hibert Space is an inner product space
with associated norms, where every Cauchy sequence is

convergent

Do you know Hilbert? No? Then what are you doing in-his space? +)




Prove that (x{ x,)? is a Mercer kernel (d € Z*, d > 1
1 =
(9(','17,) : P

X1 %, .- Ay
e We want to prove that n Xy, 1\2, 23 1
S S (I x2)%g(x)glxa) dada = 0, N\ L /

for all square integrable functions g(x) o Ny ny,

@ Here, x; and x5 are vectors s.t x1,x> € Rt
o Thus, [ [, (x{x2)%g(x1)g(x2) dx1dx2

L s
*‘w\s’\/ s.t. Zn,—d

(tak/ng a leap)

PR H(X].JXZJ) ] g(x1)g(x2) dxi1..dx1tdxo1..dxos




Prove that (x{ x5)? is a Mercer kernel (d € Z*, d > 1)

t
= Z —/ / H X11X2_, (XQ) dX1dX2
nl ©Jx; Ix

ni...nt 2 j=1

v o — —

= Z n // X1X13 - - x11)8(x1) (0133 - - - x51)g (x2) dx1dxe
1 X1 v X2



Prove that (x{ x5)? is a Mercer kernel (d € Z*, d > 1)

t

=2 nl!.d.!. n,! /x1 / [ g(x1)g(x) dxdsxe

ni...n: X2 j=1

d!
= Z ﬁ/ / (x1x13 ... x15)8(x1) (X1 %95 - . . X9t )g(x2) dxydxo
nys... el Jxy Jxo

—— T —————
ni...nt

-y 2 (1 )e() ) [ 6t xt)g ) o)

ni...nt T X2 ——————

(integral of decomposable product as product of integrals)

t
s.t. Zn,- =d
i



Prove that (x{ x5)? is a Mercer kernel (d € Z*, d > 1)

@ Realize that both the integrals are basically the same, with
different variable names

@ Thus, the equation becomes:

d! N e
2 ml...ny! (/ (x11 - xq¢)g(x1) dxa)? > 0

X1

ni...ng

(the square is non-negative for reals)
@ Thus, we have shown that (x{ x2)9 is a Mercer kernel.

jf Cm?")a Jexd (j(i;) Ax A, 20




What about Zad(xlTXQ)d s.t. ag > 07
d=1




What about Zad(xlTXQ)d s.t. ag > 07
d=1




What about Zad(xlTXQ)d s.t. ag > 07

d=1

@ We have already proved that

fxl fXQ(xIX2)dg(x1)g(xz) dxidxy, >0
@ Also, ay > 0, Vd
@ Thus,

Zad/ / xlTx2 g(x1)g(x2) dx1dxy >0
x2

.
e By which, K(x1,x2) = Zad(xle)d is a Mercer kernel.
d=1
@ Examples of Mercer Kernels: Linear Kernel, Polynomial
Kernel, Radial Basis Function Kernel



Kernels in SVR

@ Recall:
maxa; ar — 3 22 2 (i — af) (e — af )K(xi,x;) — e 2 +
af) + 32, vilai — of)
and the decision function:
F(x) = Yylar — 0f) K (xi,x) + b
are all in terms of the kernel K(x;,x;) only

@ One can now employ any mercer kernel in SVR or Ridge
Regression to implicitly perform linear regression in higher
dimensional spaces



