Introduction to Machine Learning - CS725 Instructor: Prof. Ganesh Ramakrishnan Lecture 13 - KKT Conditions, Duality, SVR Dual

KKT conditions for SVR

$$L(\mathbf{w}, \alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} \alpha_i \left(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i \right) + \sum_{i=1}^{m} \alpha_i^* \left(b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^* \right) - \sum_{i=1}^{m} \mu_i \xi_i - \sum_{i=1}^{m} \mu_i^* \xi_i^*$$

• Differentiating the Lagrangian w.r.t. w,

$$\mathbf{w} - \alpha_i \phi(\mathbf{x}_i) + \alpha_i^* \phi(\mathbf{x}_i) = 0$$
 i.e., $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

- Differentiating the Lagrangian w.r.t. ξ_i , $C \alpha_i \mu_i = 0$ i.e., $\alpha_i + \mu_i = C$
- Differentiating the Lagrangian w.r.t ξ_i^* , $\alpha_i^* + \mu_i^* = C$
- Differentiating the Lagrangian w.r.t b, $\sum_{i} (\alpha_{i}^{*} \alpha_{i}) = 0$
- Complimentary slackness:

$$\alpha_i(y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) = 0 \text{ AND } \mu_i \xi_i = 0 \text{ AND } \alpha_i^* (b + \mathbf{w}^\top \phi(\mathbf{x}_i) - y_i - \epsilon - \xi_i^*) = 0 \text{ AND } \mu_i^* \xi_i^* = 0$$

For Support Vector Regression, since the original objective and the constraints are convex, any $(\mathbf{w},b,\alpha,\alpha^*,\mu,\mu^*,\xi,\xi^*)$ that satisfy the necessary KKT conditions gives optimality (conditions are also sufficient)

Some observations

- $\alpha_i, \alpha_i^* \geq 0$, $\mu_i, \mu_i^* \geq 0$, $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$ Thus, $\alpha_i, \mu_i, \alpha_i^*, \mu_i^* \in [0, C]$, $\forall i$
- If $0 < \alpha_i < C$, then $0 < \mu_i < C$ (as $\alpha_i + \mu_i = C$)
- $\mu_i \xi_i = 0$ and $\alpha_i (y_i \mathbf{w}^{\top} \phi(\mathbf{x}_i) b \epsilon \xi_i) = 0$ are complementary slackness conditions So $0 < \alpha_i < C \Rightarrow \xi_i = 0$ and $y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b = \epsilon + \xi_i = \epsilon$
 - \bullet All such points lie on the boundary of the ϵ band
 - Using any point \mathbf{x}_j (that is with $\alpha_j \in (0, C)$) on margin, we can recover b as:

$$b = y_j - \mathbf{w}^{\top} \phi(\mathbf{x}_j) - \epsilon$$

Support Vector Regression Dual Objective

Weak Duality

- $L^*(\alpha, \alpha^*, \mu, \mu^*) = \min_{\mathbf{w}, b, \xi, \xi^*} L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$
- By weak duality theorem, we have:

$$\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \ge L^*(\alpha,\alpha^*,\mu,\mu^*)$$
s.t. $y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b \le \epsilon - \xi_i$, and $\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i \le \epsilon - \xi_i^*$, and $\xi_i,\xi^* \ge 0$, $\forall i=1,\ldots,n$

- The above is true for any $\alpha_i, \alpha_i^* \geq 0$ and $\mu_i, \mu_i^* \geq 0$
- Thus,

Weak Duality

- $\bullet \ L^*(\alpha,\alpha^*,\mu,\mu^*) = \min_{\mathbf{w},b,\xi,\xi^*} \ L(\mathbf{w},b,\xi,\xi^*,\alpha,\alpha^*,\mu,\mu^*)$
- By weak duality theorem, we have: $\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \ge L^*(\alpha,\alpha^*,\mu,\mu^*)$ s.t. $y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \le \epsilon \xi_i$, and $\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \le \epsilon \xi_i^*, \text{ and}$ $\xi_i,\xi^* > 0, \ \forall i=1,\ldots,n$
- The above is true for any $\alpha_i, \alpha_i^* \geq 0$ and $\mu_i, \mu_i^* \geq 0$
- Thus,

$$\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) \ge \max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$

s.t.
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon - \xi_i$$
, and $\mathbf{w}^{\top} \phi(\mathbf{x}_i) + b - y_i \leq \epsilon - \xi_i^*$, and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \dots, n$

Dual objective

- $\bullet \ L^*(\alpha,\alpha^*,\mu,\mu^*) = \min_{\mathbf{w},b,\xi,\xi^*} \ L(\mathbf{w},b,\xi,\xi^*,\alpha,\alpha^*,\mu,\mu^*)$

$$\min_{\mathbf{w},b,\xi,\xi^*} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) = \max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$

s.t.
$$y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b \leq \epsilon - \xi_i$$
, and $w^{\top} \phi(\mathbf{x}_i) + b - y_i \leq \epsilon - \xi_i^*$, and $\xi_i, \xi^* \geq 0$, $\forall i = 1, \dots, n$

- This value is precisely obtained at the $(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$ that satisfies the necessary (and sufficient) KKT optimality conditions
- Given strong duality, we can equivalently solve

$$\max_{\alpha,\alpha^*,\mu,\mu^*} L^*(\alpha,\alpha^*,\mu,\mu^*)$$

- $L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) + \sum_{i=1}^m (\alpha_i (y_i \mathbf{w}^\top \phi(\mathbf{x}_i) b \epsilon \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b y_i \epsilon \xi_i^*) + \sum_{i=1}^m (\mu_i \xi_i + \mu_i^* \xi_i^*)$
- We obtain \mathbf{w} , b, ξ_i , ξ_i^* in terms of α , α^* , μ and μ^* by using the KKT conditions derived earlier as $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i)$

and
$$\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0$$
 and $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$

Thus, we get:

•
$$L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} (\xi_i + \xi_i^*) + \sum_{i=1}^{m} (\alpha_i (y_i - \mathbf{w}^{\top} \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^{\top} \phi(\mathbf{x}_i) + b - y_i - \epsilon - \xi_i^*) + \sum_{i=1}^{m} (\mu_i \xi_i + \mu_i^* \xi_i^*)$$

• We obtain \mathbf{w} , b, ξ_i , ξ_i^* in terms of α , α^* , μ and μ^* by using the KKT conditions derived earlier as $\mathbf{w} = \sum_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

and
$$\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0$$
 and $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$

Thus, we get:

$$L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$$

$$= \frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j) +$$

$$\sum_{i} (\xi_i (C - \alpha_i - \mu_i) + \xi_i^* (C - \alpha_i^* - \mu_i^*)) - b \sum_{i} (\alpha_i - \alpha_i^*) -$$

$$\epsilon \sum_{i} (\alpha_i + \alpha_i^*) + \sum_{i} y_i (\alpha_i - \alpha_i^*) - \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_i^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_i)$$

• $L(\alpha, \alpha^*, \mu, \mu^*) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m (\xi_i + \xi_i^*) + \sum_{i=1}^m (\alpha_i (y_i - \mathbf{w}^\top \phi(\mathbf{x}_i) - b - \epsilon - \xi_i) + \alpha_i^* (\mathbf{w}^\top \phi(\mathbf{x}_i) + b - y_i - \epsilon - \xi_i^*) + \sum_{i=1}^m (\mu_i \xi_i + \mu_i^* \xi_i^*)$

• We obtain \mathbf{w} , b, ξ_i , ξ_i^* in terms of α , α^* , μ and μ^* by using the KKT conditions derived earlier as $\mathbf{w} = \sum\limits_{i=1}^m (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i)$

and
$$\sum_{i=1}^{\infty} (\alpha_i - \alpha_i^*) = 0$$
 and $\alpha_i + \mu_i = C$ and $\alpha_i^* + \mu_i^* = C$

Thus, we get:

$$L(\mathbf{w}, b, \xi, \xi^*, \alpha, \alpha^*, \mu, \mu^*)$$

$$= \frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j) +$$

$$\sum_{i} (\xi_i (C - \alpha_i - \mu_i) + \xi_i^* (C - \alpha_i^* - \mu_i^*)) - b \sum_{i} (\alpha_i - \alpha_i^*) -$$

$$\epsilon \sum_{i} (\alpha_i + \alpha_i^*) + \sum_{i} y_i (\alpha_i - \alpha_i^*) - \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j)$$

$$= -\frac{1}{2} \sum_{i} \sum_{j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^{\top}(\mathbf{x}_i) \phi(\mathbf{x}_j) - \epsilon \sum_{i} (\alpha_i + \alpha_i^*) + \sum_{i} y_i (\alpha_i - \alpha_i^*)$$

Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

• $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$ the final decision function $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j - \sum_{i=1}^{m} (\alpha_i - \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) - \epsilon$ \mathbf{x}_i is any point with $\alpha_i \in (0, C)$. Recall similarity with

Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$ the final decision function $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon$ \mathbf{x}_j is any point with $\alpha_j \in (0, C)$. Recall similarity with kernelized expression for Ridge Regression
- The dual optimization problem to compute the α 's for SVR is:

Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$

- $\mathbf{w} = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi(\mathbf{x}_i) \Rightarrow$ the final decision function $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}) + y_j \sum_{i=1}^{m} (\alpha_i \alpha_i^*) \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_j) \epsilon$ \mathbf{x}_j is any point with $\alpha_j \in (0, C)$. Recall similarity with kernelized expression for Ridge Regression
- The dual optimization problem to compute the α 's for SVR is:

$$\begin{aligned} \max_{\alpha_i,\alpha_i^*} &- \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \phi^\top(\mathbf{x}_i) \phi(\mathbf{x}_j) \\ &- \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) \end{aligned}$$

s.t.

- $\alpha_i, \alpha_i^* \in [0, C]$
- We notice that the only way these three expressions involve ϕ is through $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)=K(\mathbf{x}_i,\mathbf{x}_j)$, for some i,j

Recap from Quiz 1: Kernelizing Ridge Regression

- Given $w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$ and using the identity $(P^{-1} + B^T R^{-1} B)^{-1} B^T R^{-1} = PB^T (BPB^T + R)^{-1}$
 - $\Rightarrow w = \Phi^T (\Phi \Phi^T + \lambda I)^{-1} y = \sum_{i=1}^m \alpha_i \phi(x_i)$ where $\alpha_i = ((\Phi \Phi^T + \lambda I)^{-1} y)_i$
 - \Rightarrow the final decision function $f(\mathbf{x}) = \phi^T(\mathbf{x})\mathbf{w} = \sum_{i=1}^m \alpha_i \phi^T(\mathbf{x})\phi(\mathbf{x}_i)$
- Again, We notice that the only way the decision function $f(\mathbf{x})$ involves ϕ is through $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$, for some i,j

The Kernel function

- We call $\phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_j)$ a kernel function: $K(\mathbf{x}_i, \mathbf{x}_i) = \phi^{\top}(\mathbf{x}_i)\phi(\mathbf{x}_i)$
- The Kernel Trick: For some important choices of ϕ , compute $K(\mathbf{x}_i, \mathbf{x}_j)$ directly and more efficiently than having to explicitly compute/enumerate $\phi^{(\mathbf{x}_i)}$ and $\phi(\mathbf{x}_j)$
- The expression for decision function becomes $f(x) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$
- Computation of α_i is specific to the objective function being minimized: Closed form exists for Ridge regression but NOT for SVR

Back to the Kernelized version of SVR

The kernelized dual problem:

$$\max_{\alpha_{i},\alpha_{i}^{*}} -\frac{1}{2} \sum_{i} \sum_{j} (\alpha_{i} - \alpha_{i}^{*})(\alpha_{j} - \alpha_{j}^{*}) K(\mathbf{x}_{i}, \mathbf{x}_{j})$$
$$-\epsilon \sum_{i} (\alpha_{i} + \alpha_{i}^{*}) + \sum_{i} y_{i}(\alpha_{i} - \alpha_{i}^{*})$$

s.t.

$$\bullet \sum_{i} (\alpha_i - \alpha_i^*) = 0$$

•
$$\alpha_i, \alpha_i^* \in [0, C]$$

The kernelized decision function:

$$f(\mathbf{x}) = \sum_{i} (\alpha_{i} - \alpha_{i}^{*}) K(\mathbf{x}_{i}, \mathbf{x}) + b$$

• Using any point x_j with $\alpha_j \in (0, C)$: $b = y_j - \sum_i (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}_j)$

• Computing $K(\mathbf{x}_1, \mathbf{x}_2)$ often does not even require computing $\phi(\mathbf{x}_1)$ or $\phi(\mathbf{x}_2)$ explicitly

Basis function expansion and the Kernel trick

We started off with the functional form¹

$$f(\mathbf{x}) = \sum_{j=1}^{p} w_j \phi_j(\mathbf{x})$$

Each ϕ_j is called a *basis function* and this representation is called *basis function expansion*²

And we landed up with an equivalent

$$f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$

for Ridge regression and Support Vector Regression

• Aside: For $p \in [0, \infty)$, with what K, kind of regularizers, loss functions, *etc.*, will these dual representations hold?³

 $^{^1{\}rm The}$ additional b term can be either absorbed in ϕ or kept separate as discussed on several occasions.

²Section 2.8.3 of Tibshi

³Section 5.8.1 of Tibshi.

An Example Kernel

- Let $K(\mathbf{x}_1, \mathbf{x}_2) = (1 + \mathbf{x}_1^{\top} \mathbf{x}_2)^2$
- What $\phi(\mathbf{x})$ will give $\phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2) = K(\mathbf{x}_1,\mathbf{x}_2) = (1+\mathbf{x}_1^{\top}\mathbf{x}_2)^2$
- Is such a ϕ guaranteed to exist?
- Is there a unique ϕ for given K?

An Example Kernel

- ullet We can prove that such a ϕ exists
- For example, for a 2-dimensional \mathbf{x}_i :

$$\phi(\mathbf{x}_i) = \begin{bmatrix} 1\\ x_{i1}\sqrt{2}\\ x_{i2}\sqrt{2}\\ x_{i1}x_{i2}\sqrt{2}\\ x_{i1}^2\\ x_{i2}^2 \end{bmatrix}$$

- $\phi(\mathbf{x}_i)$ exists in a 5-dimensional space
- But, to compute $K(\mathbf{x}_1, \mathbf{x}_2)$, all we need is $x_1^\top x_2$ without having to enumerate $\phi(\mathbf{x}_i)$

More on the Kernel Trick

- Kernels operate in a high-dimensional, implicit feature space without necessarily computing the coordinates of the data in that space, but rather by simply computing the Kernel function
- This approach is called the "kernel trick" and will subsequently talk about valid kernels
- This operation is often computationally cheaper than the explicit computation of the coordinates
- Claim: If $K_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ are entries of an $n \times n$ Gram Matrix K then
 - ullet $\mathcal K$ must be positive semi-definite

• Proof:
$$\mathbf{b}^T \mathcal{K} \mathbf{b} = \sum_{i,j} b_i \mathcal{K}_{ij} b_j = \sum_{i,j} b_i b_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

= $\langle \sum_i b_i \phi(\mathbf{x}_i), \sum_j b_j \phi(\mathbf{x}_j) \rangle = ||\sum_i b_i \phi(\mathbf{x}_i)||_2^2 \ge 0$

Existence of basis expansion ϕ for symmetric K?

• Positive-definite kernel: For any dataset $\{x_1, x_2, \dots, x_m\}$ and for any m, the Gram matrix \mathcal{K} must be positive definite

$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

so that $\mathcal{K}=U\Sigma U^T=(U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T=RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix

⁴Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s_theorem

Existence of basis expansion ϕ for symmetric K?

• Positive-definite kernel: For any dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ and for any m, the Gram matrix \mathcal{K} must be positive definite

$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

so that $\mathcal{K} = U\Sigma U^T = (U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T = RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix

• *Mercer kernel*: Extending to eigenfunction decomposition⁴:

$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{j=1}^{\infty} \alpha_j \phi_j(\mathbf{x}_1) \phi_j(\mathbf{x}_2)$$
 where $\alpha_j \geq 0$ and $\sum_{j=1}^{\infty} \alpha_j^2 < \infty$

 Mercer kernel and Positive-definite kernel turn out to be equivalent if the input space {x} is compact⁵

⁵That is, if every Cauchy sequence is convergent. <□ > <♂ > <≥ > <≥ > <≥ > < > < <

⁴Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s_theorem

Mercer's theorem

- Mercer kernel: $K(\mathbf{x}_1, \mathbf{x}_2)$ is a Mercer kernel if $\int \int K(\mathbf{x}_1, \mathbf{x}_2) g(\mathbf{x}_1) g(\mathbf{x}_2) \, d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$ for all square integrable functions $g(\mathbf{x})$ $(g(\mathbf{x})$ is square integrable *iff* $\int (g(\mathbf{x}))^2 \, dx$ is finite)
- Mercer's theorem:

An implication of the theorem: for any *Mercer kernel* $K(\mathbf{x}_1, \mathbf{x}_2)$, $\exists \phi(\mathbf{x}) : \mathbb{R}^n \mapsto H$, s.t. $K(\mathbf{x}_1, \mathbf{x}_2) = \phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2)$

- where *H* is a *Hilbert space*⁶, the infinite dimensional version of the Eucledian space.
- Eucledian space: $(\Re^n, <.,.>)$ where <.,.> is the standard dot product in \Re^n
- Advanced: Formally, Hibert Space is an inner product space with associated norms, where every Cauchy sequence is convergent

⁶Do you know Hilbert? No? Then what are you doing in his space? ♠)

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, \ d \geq 1)$

- We want to prove that $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) \, d\mathbf{x}_1 d\mathbf{x}_2 \ge 0,$ for all square integrable functions $g(\mathbf{x})$
- ullet Here, $old x_1$ and $old x_2$ are vectors s.t $old x_1, old x_2 \in \Re^t$
- Thus, $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$

$$= \int_{x_{11}} ... \int_{x_{1t}} \int_{x_{21}} ... \int_{x_{2t}} \left[\sum_{n_1..n_t} \frac{d!}{n_1!..n_t!} \prod_{j=1}^t (x_{1j}x_{2j})^{n_j} \right] g(x_1)g(x_2) dx_{11}...dx_{1t}dx_{21}...dx_{2t}$$

s.t.
$$\sum_{i=1}^{t} n_i = d$$
 (taking a leap)

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, \ d \geq 1)$

$$= \sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \prod_{i=1}^t (x_{1j} x_{2j})^{n_j} g(x_1) g(x_2) dx_1 dx_2$$

$$=\sum_{n_1...n_t}\frac{d!}{n_1!\ldots n_t!}\int_{\mathbf{x}_1}\int_{\mathbf{x}_2}(x_{11}^{n_1}x_{12}^{n_2}\ldots x_{1t}^{n_t})g(x_1)(x_{21}^{n_1}x_{22}^{n_2}\ldots x_{2t}^{n_t})g(x_2)dx_1dx_2$$

Prove that $(\mathbf{x}_1^{ op}\mathbf{x}_2)^d$ is a Mercer kernel $(d\in\mathbb{Z}^+,\ d\geq 1)$

$$= \sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \prod_{i=1}^t (x_{1j} x_{2j})^{n_j} g(x_1) g(x_2) dx_1 dx_2$$

$$=\sum_{n_1...n_t}\frac{d!}{n_1!\ldots n_t!}\int_{\mathbf{x}_1}\int_{\mathbf{x}_2}(x_{11}^{n_1}x_{12}^{n_2}\ldots x_{1t}^{n_t})g(x_1)(x_{21}^{n_1}x_{22}^{n_2}\ldots x_{2t}^{n_t})g(x_2)dx_1dx_2$$

$$=\sum_{n_1...n_t}\frac{d!}{n_1!\ldots n_t!}\left(\int_{\mathbf{x}_1}(x_{11}^{n_1}\ldots x_{1t}^{n_t})g(x_1)\,dx_1\right)\left(\int_{\mathbf{x}_2}(x_{21}^{n_1}\ldots x_{2t}^{n_t})g(x_2)\,dx_2\right)$$

(integral of decomposable product as product of integrals)

s.t.
$$\sum_{i}^{l} n_i = d$$

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \geq 1)$

- Realize that both the integrals are basically the same, with different variable names
- Thus, the equation becomes:

$$\sum_{n_1...n_t} \frac{d!}{n_1! \ldots n_t!} \left(\int_{\mathbf{x}_1} (x_{11}^{n_1} \ldots x_{1t}^{n_t}) g(x_1) \, dx_1 \right)^2 \geq 0$$

(the square is non-negative for reals)

ullet Thus, we have shown that $(\mathbf{x}_1^{ op}\mathbf{x}_2)^d$ is a Mercer kernel.

What about $\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ s.t. $\alpha_d \geq 0$?

•
$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d$$

• Is
$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$
?

We have

$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(x_1) g(x_2) dx_1 dx_2 =$$

What about $\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ s.t. $\alpha_d \geq 0$?

•
$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d$$

• Is
$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$
?

We have

$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 =$$

$$\sum_{d=1}^{r} \alpha_d \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$$

What about
$$\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$
 s.t. $\alpha_d \geq 0$?

- We have already proved that $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$
- Also, $\alpha_d \geq 0$, $\forall d$
- Thus,

$$\sum_{d=1}^{r} \alpha_d \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x} \mathbf{1}^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$

- By which, $K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^{r} \alpha_d(\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ is a Mercer kernel.
- Examples of Mercer Kernels: Linear Kernel, Polynomial Kernel, Radial Basis Function Kernel

Kernels in SVR

- Recall: $\max_{\alpha_i,\alpha_i^*} \frac{1}{2} \sum_i \sum_j (\alpha_i \alpha_i^*)(\alpha_j \alpha_j^*) K(\mathbf{x}_i, \mathbf{x}_j) \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i \alpha_i^*)$ and the decision function: $f(\mathbf{x}) = \sum_i (\alpha_i \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}) + b$ are all in terms of the kernel $K(\mathbf{x}_i, \mathbf{x}_i)$ only
- One can now employ any mercer kernel in SVR or Ridge Regression to implicitly perform linear regression in higher dimensional spaces

Equivalent Forms of Ridge Regression

 Consider the formulation in which we limit the weights of the coefficients by putting a constraint on size of the L2 norm of the weight vector:

$$\operatorname{argmin}_{\mathbf{w}}(\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T(\mathbf{\Phi}\mathbf{w} - \mathbf{y}) \ \|\mathbf{w}\|_2^2 \leq \xi$$

- The objective function, namely $f(\mathbf{w}) = (\mathbf{\Phi}\mathbf{w} \mathbf{y})^{\mathsf{T}}(\mathbf{\Phi}\mathbf{w} \mathbf{y})$ is strictly convex. The constraint function, $g(\mathbf{w}) = \|\mathbf{w}\|_2^2 \xi$, is also convex.
- For convex $g(\mathbf{w})$, the set $\{\mathbf{w}|\mathbf{g}(\mathbf{w}) \leq \mathbf{0}\}$, is also convex. (Why?)

Equivalent Forms of Ridge Regression

• To minimize the error function subject to constraint $|\mathbf{w}| \leq \xi$, we apply KKT conditions at the point of optimality \mathbf{w}^*

$$\nabla_{\mathbf{w}^*}(f(\mathbf{w}) + \lambda \mathbf{g}(\mathbf{w})) = \mathbf{0}$$

(the first KKT condition). Here, $f(\mathbf{w}) = (\Phi \mathbf{w} - \mathbf{y})^T (\Phi \mathbf{w} - \mathbf{y})$ and, $g(\mathbf{w}) = \|\mathbf{w}\|^2 - \xi$.

Solving we get,

$$\mathbf{w}^* = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi}^T \mathbf{y}$$

From the second KKT condition we get,

$$\|\mathbf{w}^*\|^2 \le \xi$$

From the third KKT condition,

$$\lambda \geq 0$$

From the fourth condition

$$\lambda \|\mathbf{w}^*\|^2 = \lambda \xi$$

Equivalent Forms of Ridge Regression

• Values of ${\bf w}$ and λ that satisfy all these equations would yield an optimal solution. That is, if

$$\|\mathbf{w}^*\| = \|(\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}\| \leq \xi$$

then $\lambda=0$ is the solution. Else, for some sufficiently large value, λ will be the solution to

$$\|\mathbf{w}^*\| = \|(\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y}\| = \xi$$

Bound on λ in the regularized least square solution

Consider,

$$(\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y} = \mathbf{w}^*$$

We multiply $(\Phi^T \Phi + \lambda I)$ on both sides and obtain,

$$\|(\Phi^T\Phi)\mathbf{w}^* + (\lambda \mathbf{I})\mathbf{w}^*\| = \|\mathbf{\Phi}^T\mathbf{y}\|$$

Using the triangle inequality we obtain,

$$\|(\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\Phi})\mathbf{w}^*\| + (\lambda)\|\mathbf{w}^*\| \ge \|(\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{\Phi})\mathbf{w}^* + (\lambda\mathbf{I})\mathbf{w}^*\| = \|\boldsymbol{\Phi}^{\mathsf{T}}\mathbf{y}\|$$

• By the Cauchy Shwarz inequality, $\|(\Phi^T \Phi) \mathbf{w}^*\| \le \alpha \|\mathbf{w}^*\|$ for some $\alpha = \|(\Phi^T \Phi)\|$. Substituting in the previous equation,

$$(\alpha + \lambda) \|\mathbf{w}^*\| \ge \|\mathbf{\Phi}^\mathsf{T}\mathbf{y}\|$$

i.e.

$$\lambda \ge \frac{\|\boldsymbol{\Phi}^T \mathbf{y}\|}{\|\mathbf{w}^*\|} - \alpha$$

Note that when $\|\mathbf{w}^*\| \to \mathbf{0}, \lambda \to \infty$. (Any intuition?) Using $\|\mathbf{w}^*\|^2 \le \xi$ we get,

Bound on λ in the regularized least square solution

 $\|(\Phi^T \Phi) \mathbf{w}^*\| \le \alpha \|\mathbf{w}^*\|$ for some α for finite $\|(\Phi^T \Phi) \mathbf{w}^*\|$. Substituting in the previous equation,

$$(\alpha + \lambda) \|\mathbf{w}^*\| \ge \|\Phi^T \mathbf{y}\|$$

i.e.

$$\lambda \ge \frac{\|\boldsymbol{\Phi}^T \mathbf{y}\|}{\|\mathbf{w}^*\|} - \alpha$$

Note that when $\|\mathbf{w}^*\| \to 0, \lambda \to \infty$. (Any intuition?) Using $\|\mathbf{w}^*\|^2 \le \xi$ we get,

$$\lambda \ge \frac{\|\boldsymbol{\Phi}^T \mathbf{y}\|}{\sqrt{\xi}} - \alpha$$

This is not the exact solution of λ but the bound proves the existence of λ for some ξ and Φ .

The Resultant alternative objective function

Substituting $g(\mathbf{w}) = \|\mathbf{w}\|^2 - \xi$, in the first KKT equation considered earlier:

$$\nabla_{\mathbf{w}^*}(f(\mathbf{w}) + \lambda \cdot (\|\mathbf{w}\|^2 - \xi)) = \mathbf{0}$$

This is equivalent to solving

$$\min(\parallel \Phi \mathbf{w} - \mathbf{y} \parallel^2 + \lambda \parallel \mathbf{w} \parallel^2)$$

for the same choice of λ . This form of **regularized** ridge regression is the **penalized ridge regression**.