Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan

Lecture 13 - KKT Conditions, Duality, SVR Dual



KKT conditions for SVR

Lw, 0%, 1, 1%) = - [wl? ICEE) +Za,(y, wio(x) —b—e—&)+

m

Saf (b+wTéx) —yi—e—&7) - Zﬂfl S uie
i=1

i=1
o Differentiating the Lagranglan w.r.t. w,
m
w — a;p(x;) + afp(xi) =0 ie, w=> (aj — af)p(x)
i=1
o Differentiating the Lagrangian w.r.t. &;,
C—aj—pi=0ie,aj+pu=C
o Differentiating the Lagrangian w.r.t £,

af +pu; =C
o Differentiating the Lagrangian w.r.t b,
>ilaf —a;)=0

@ Complimentary slackness:
a,-(y; - qub(x,') —b—€— 5,) =0 AND ;L,'é,' =0 AND
af(b+wlo(x;) —y; —e—£&)=0AND pi& =



For Support Vector Regression, since the original objective and the
constraints are convex, any (w, b, a, a*, u, p*, €, £*) that satisfy
the necessary KKT conditions gives optimality (conditions are also
sufficient)



Some observations

o aj,a; >0, pjypu; >0, aj +pj=Cand of +pu; = C
Thus, aj, pi, af, pwi € [0, C], Vi
e lf0<a;<C, then0< < C
(as aj + pj = C)
o pi&i=0and a;(yi—w'¢(x;)) —b—e—§&)=0are
complementary slackness conditions
Sol0<a;< C:>f,-:Oandy,-—wTd)(x,-)—b:e+§,-:e
o All such points lie on the boundary of the € band
e Using any point x; (that is with «; € (0, C)) on margin, we
can recover b as:
b=y —wlo(x;) —e



Support Vector Regression
Dual Objective



Weak Duality

° L*(a7a*7/’l’7 /"[/*) = wrg”é_né_* L(W7 b7€’§*7a7 a*7u’/’l’*)

o By weak duality theorem, we have:

: 2 * * * *
min L IWl? + €Y (6746 > (s, )

st yi—w! ¢(x;) — b <e—¢&, and
wio(x;)+b—y <e— &*, and
£,6>0,Vi=1,...,n
@ The above is true for any a;,af > 0 and p;, u; >0
@ Thus,



Weak Duality

° L*(a7a*7/’l’7 /"[/*) = wrg”é_né_* L(W7 b7€’§*7a7 a*7u’/’l’*)

o By weak duality theorem, we have:

: 2 * * * *
min L IWl? + €Y (6746 > (s, )

st yi—w! ¢(x;) — b <e—¢&, and
wio(x;)+b—y <e— &*, and
£,6>0,Vi=1,...,n
@ The above is true for any a;,af > 0 and p;, u; >0
@ Thus,

R TP
B M+ CIE ) 2 max e )
st.yi—wlg(x;) —b<e—&, and

w'p(xj)+b—y <e—¢&F, and

£, >0, Vi=1,...,n



Dual objective

o L*(a,a pu,p*) = min L(w,b,& & o, ", p, ")
@ Assume: In case of SVR, we have a strictly convex objective
and linear constraints = KKT conditions are necessary and

sufficient and strong duality holds:

m
mlnfw +C 4+ & . max L(a,a”,
S g WP CX €)= mae et n)

st yi—w! ¢(x;) — b <e—¢&, and
wlé(x;)+b—y <e—¢&F, and
&, >0, Vi=1,...,n

@ This value is precisely obtained at the (w, b, &, &*, o, *, i, p*)
that satisfies the necessary (and sufficient) KKT optimality
conditions

@ Given strong duality, we can equivalently solve

max L*(a, ", pu, 1*)

aa



o Lla,a® i) = 5 |wl|* + C T (& + &) +
Y (eilyi —w'(xi) = b—e—&) +af(w'd(x;) + b—y; — €= &)

[y

m

.Zl(“'g' + K 5,*)
=
o We obtain w, b, &;, & in terms of a, a*, p and p* by using
m
the KKT conditions derived earlier as w = ) (a; — af)o(x;)
i=1
m
and Y (aj—af)=0and oj+pj=Cand af +puf =C
i=1
@ Thus, we get:



o L(«a 7”:“‘) 2||W|| +CZ/ 1(§l+£)

i( Qilyi —WT(x;) — b— e — &) + af(wT ¢(x;) + b — yi — ¢ — &)
i(l‘l&/ + u; 5,*)

o We obtain w, b, &;, & in terms of a, a*, p and p* by using

the KKT conditions derived earlier as w = ) (a; — af)o(x;)
i=1
and Y (aj—af)=0and oj+pj=Cand af +puf =C
i=1

@ Thus, we get:
L(vr,b,é,é*,a,a s 1y 1)
=32 2j(ai = af)(o) — o )¢T(X:)¢(XJ)
Z;(f,’(C—Oé, NI)+§*(C —pui))—b Z:(O‘I —of) -
e ilai+a7) + 32 yilai — ) > 2 —af) (o —
af)o ' (xi)e(x))



o L(«a 7”:“‘) 2||W|| +CZ/ 1(§l+£)

é( ai(yi—w'o(x;)) = b—e— &)+ aj(w o(x;) + b—yi —e— &)
é(l‘l&/ "’N, 5*)

o We obtain w, b, &;, & in terms of a, a*, p and p* by using

the KKT conditions derived earlier as w = i(a; —af)p(xi)
i=1
and i(a;—a?)annd aj+pi=Candof+pui=C
i=1

@ Thus, we get:
L(W, b7§a€*7a7a*7,u’7 /’L*)
=3 22— af)(ay — af)d T (xi)d(x) +
Z;(Si(C—a: )+ € (C = af — i) — b Z,( aj) —
e> ilai+af)+ 3 yilai —a7) =32 3 (e )( -
af)o’ (xi)e(x))
= =52 il — af)(ey — af)o T (xi)d(x;) — €30 +
ai) + 22 vilai — af)

e



Kernel function: K(x;,x;) = ¢T(Xi)¢(xj)

o w=> " (o —af)p(x;) = the final decision function
f(x) =wlo(x) + b=
>oila(ai—af)eT (xi)e(x) +y; = 3y (i —af)oT (x)p(x;) —€

x; is any point with a; € (0, C). Recall similarity with



Kernel function: K(x;,x;) = ¢T(Xi)¢(xj)

o w=> " (o —af)p(x;) = the final decision function
f(x) =wT¢(x)+ b=
S (i —07)0 T (x)O(0) 4y~ Sy (o — )6 T (xi)o ()
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kernelized expression for Ridge Regression

@ The dual optimization problem to compute the a's for SVR is:



Kernel function: K(x;,x;) = ¢T(Xi)¢(xj)

o w=> " (o —af)p(x;) = the final decision function
f(x) =wT¢(x)+ b=
S (i —07)0 T (x)O(0) 4y~ Sy (o — )6 T (xi)o ()
x; is any point with a; € (0, C). Recall similarity with
kernelized expression for Ridge Regression

@ The dual optimization problem to compute the a's for SVR is:

1
MaXasa; = 5 D0 (e — a)laj — a6 (x)(x)
i

—€> (ai+af)+ ) yilei —af)
1 1
s.t.
o > (ai—a;f)=0
° a,-,oz,’f S [0, C]
@ We notice that the only way these three expressions
involve ¢ is through ng(x,-)gb(xj) = K(x;,x;), for some i,



Recap from Quiz 1: Kernelizing Ridge Regression

o Given w = (®7® + AI)"1®Ty and using the identity
(P14+BTR'B)"'1BTR™! = PBT(BPB"T + R)™!
o = w=0T(GT + M)"ly = Y7 a;6(x) where
a;p = (P67 + A1) ty),
e = the final decision function
f(x) = o (x)w =327, aio” (x)o(x;)
@ Again, We notice that the only way the decision function
f(x) involves ¢ is through ¢ (x;)é(x;), for some i, j



The Kernel function

o We call ¢ (x;)¢(x;) a kernel function:
K(xi,x;) = ¢ (x;)o(x;)

@ The Kernel Trick: For some important choices of ¢, compute
K(xi,x;) directly and more efficiently than having to explicitly
compute/enumerate ¢(x;) and ¢(x;)

@ The expression for decision function becomes
F(x) = 2oLy aiK(x,x;)

e Computation of «; is specific to the objective function being

minimized: Closed form exists for Ridge regression but NOT
for SVR



Back to the Kernelized version of SVR

@ The kernelized dual problem:

l * *
MaXa,; ar — 5 E E (i — o) (o — aj)K(x,-,xj)
i

—€> (ai+af)+ ) yilei—af)
1 1
s.t.
o > i(ai—af)=0
° a;,a,-* S [07 C]
@ The kernelized decision function:
f(x)=>(ai —af)K(xi,x) + b
@ Using any point x; with a; € (0, C):
b=y — > i(ei — af)K(xi, %))
e Computing K(x1,x2) often does not even require computing
o(x1) or ¢(x2) explicitly



Basis function expansion and the Kernel trick

o We started off with the functional form?
P
f(x) =) wgi(x)
j=1
Each ¢; is called a basis function and this representation is
called basis function expansion®
@ And we landed up with an equivalent

f(x) = Z a;iK(x,x;)
i=1

for Ridge regression and Support Vector Regression
@ Aside: For p € [0,00), with what K, kind of regularizers, loss
functions, etc., will these dual representations hold?3

!The additional b term can be either absorbed in ¢ or kept separate as
discussed on several occasions.

2Section 2.8.3 of Tibshi

3Section 5.8.1 of Tibshi.




An Example Kernel

o Let K(x1,%2) = (1 + x{ x2)?
o What ¢(x) will give ¢ (x1)¢(x2) = K(x1,%2) = (1 + x{ x2)?
@ Is such a ¢ guaranteed to exist?

@ Is there a unique ¢ for given K?



An Example Kernel

@ We can prove that such a ¢ exists

@ For example, for a 2-dimensional x;:
C 1T

xi1v/2

Xi2V/2

X;) =

)= o3

Xi21

2
Xio

@ ¢(x;) exists in a 5-dimensional space

o But, to compute K(x1,x2), all we need is x;' x, without

having to enumerate ¢(x;)



target

Support Vector Regression

RBF model
Linear model
Polynomial model
data

data




More on the Kernel Trick

o Kernels operate in a high-dimensional, implicit feature space
without necessarily computing the coordinates of the data in
that space, but rather by simply computing the Kernel
function

@ This approach is called the " kernel trick” and will
subsequently talk about valid kernels

@ This operation is often computationally cheaper than the
explicit computation of the coordinates

o Claim: If ICjj = K(x;, ;) = (é(xi), ¢(x;)) are entries of an
n x n Gram Matrix K then

e K must be positive semi-definite

o Proof: bTICb—ZbIC,Jb _be xi), B(x)))

Zb¢(x mexj f||Zb¢> )3 >0



Existence of basis expansion ¢ for symmetric K7

e Positive-definite kernel: For any dataset {x1,x2,...,Xm} and
for any m, the Gram matrix C must be positive definite
K(x1,x1) K(x1,xn)
K= cee f((X;,Xj) e
K(Xm, X1) K (Xm,Xm)

so that K = USUT = (US2)(UL2)T = RRT where rows of
U are linearly independent and X is a positive diagonal matrix

*Eigen-decomposition wrt linear operators. See
https://en.wikipedia.org/wiki/Mercer27s_theorem
5That is, if every Cauchy sequence is convergent.


https://en.wikipedia.org/wiki/Mercer%27s_theorem

Existence of basis expansion ¢ for symmetric K7

e Positive-definite kernel: For any dataset {x1,x2,...,Xm} and
for any m, the Gram matrix C must be positive definite
K(x1,x1) K(x1,xn)
K= K(X,’,Xj)
K(Xm, X1) K (Xm,Xm)

so that K = USUT = (US2)(UL2)T = RRT where rows of
U are linearly independent and X is a positive diagonal matrix
o Mercer kernel: Extending to eigenfunction decomposition®

(o]
K(Xl,X2) = Zaj¢j(x1)¢j(x2) where Q; > 0 and
Jj=1
o0 2
D joq af <00
@ Mercer kernel and Positive-definite kernel turn out to be
equivalent if the input space {x} is compact®
*Eigen-decomposition wrt linear operators. See
https://en.wikipedia.org/wiki/Mercer27s_theorem
5That is, if every Cauchy sequence is convergent.
e



https://en.wikipedia.org/wiki/Mercer%27s_theorem

Mercer's theorem

e Mercer kernel: K(x1,x2) is a Mercer kernel if
[ [ K(x1,%x2)g(x1)g(x2) dx1dx, > 0 for all square integrable
functions g(x)
(g(x) is square integrable iff [(g(x))? dx is finite)

e Mercer’'s theorem:
An implication of the theorem:
for any Mercer kernel K(x1,x2), 3¢(x) : R" — H,
s.t. K(x1,%2) = ¢ (x1)9(x2)
o where H is a Hilbert space®, the infinite dimensional version of
the Eucledian space.
o Eucledian space: (R",< .,.>) where < .,. > is the standard
dot product in "
e Advanced: Formally, Hibert Space is an inner product space
with associated norms, where every Cauchy sequence is
convergent

Do you know Hilbert? No? Then what are you doing inhis space? =)



Prove that (x{ x5)? is a Mercer kernel (d € Z*, d > 1)

@ We want to prove that

le fXQ(XIX2)dg(x1)g(x2) dX1dX2 2 OY
for all square integrable functions g(x)

@ Here, x; and x; are vectors s.t x,x> € Rt
o Thus, [ [ (x{x2)%g(x1)g(x2) dx1dx2

d .
:/ / / / Y =)™ | gla)gix) dr.dxiedxor..dwe
X11 X1t v X21 X2t ny..n¢ .-t Jj=1
s.t. Z ni=d

(tak/ng a leap)



Prove that (x{ x5)? is a Mercer kernel (d € Z*, d > 1)




Prove that (x{ x5)? is a Mercer kernel (d € Z*, d > 1)

- Z nl|d|nt|/x1 /X2H x1j%2j)" g(x1)g(x2) dxydxo

=, [ G g ) (i - xE)g ) dac
1 X1 v X2

= 2. nl,dlnt. (/XI(X{? - xqp)g(x1) dx) (/XQ(xgll X5 g (x2) dxo)

ni...nt

(integral of decomposable product as product of integrals)

s.t. Zn,- =d



Prove that (x{ x5)? is a Mercer kernel (d € Z*, d > 1)

@ Realize that both the integrals are basically the same, with
different variable names

@ Thus, the equation becomes:

d! .
2 m!...n! (/Xl(xli L xqp)g(x) dxi)? = 0

ni...ng

(the square is non-negative for reals)
@ Thus, we have shown that (x{ x2)9 is a Mercer kernel.



What about Zad(xlTXQ)d s.t. ag > 07
d=1
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What about Zad(xlTXQ)d s.t. ag > 07

d=1

@ We have already proved that

fxl fXQ(xIX2)dg(x1)g(xz) dxidxy, >0
@ Also, ay > 0, Vd
@ Thus,

Zad/ / xlTx2 g(x1)g(x2) dx1dxy >0
x2

.
e By which, K(x1,x2) = Zad(xle)d is a Mercer kernel.
d=1
@ Examples of Mercer Kernels: Linear Kernel, Polynomial
Kernel, Radial Basis Function Kernel



Kernels in SVR

@ Recall:
maxa;ar — 3 22 2 (i — af) (e — af )K(xi,x;) — € 2 +
af) + 32, vilai — of)
and the decision function:
F(x) = Yylar — 0f)K(xi,x) + b
are all in terms of the kernel K(x;,x;) only

@ One can now employ any mercer kernel in SVR or Ridge
Regression to implicitly perform linear regression in higher
dimensional spaces



target

Support Vector Regression

RBF model
Linear model
Polynomial model
data

data




Equivalent Forms of Ridge Regression

@ Consider the formulation in which we limit the weights of the
coefficients by putting a constraint on size of the L2 norm of
the weight vector:

argmin,, (®w — y) 7 (dw — y)
Iwll3 < ¢
o The objective function, namely f(w) = (dw — y)T(dw —y)

is strictly convex. The constraint function, g(w) = ||wl3 — ¢,
is also convex.

@ For convex g(w), the set {w|g(w) < 0}, is also convex.
(Why?)



Equivalent Forms of Ridge Regression

@ To minimize the error function subject to constraint |w| < &,
we apply KKT conditions at the point of optimality w*

Vw-(f(w) + Ag(w)) = 0

(the first KKT condition). Here, f(w) = (dw —y) ' (dw — y)
and, g(w) = [[w|* —&.
@ Solving we get,

wh = (0T + AN oy
From the second KKT condition we get,
w1 < ¢
From the third KKT condition,
A>0
From the fourth condition
Allw?[|? = ¢
e



Equivalent Forms of Ridge Regression

@ Values of w and A that satisfy all these equations would yield
an optimal solution. That is, if

Iw[| = [[(eT®) "o Ty < ¢

then A = 0 is the solution. Else, for some sufficiently large
value, A will be the solution to

Iw[| = [[(®T &+ AN e Ty| = ¢



Bound on A in the regularized least square solution

o Consider,
(@To+ Aoy = w?
We multiply (7@ + A\/) on both sides and obtain,
I(®Te)w + (Aw*| = @ Ty|
Using the triangle inequality we obtain,
(@ T @)W || + (A)llw*[| > [[(®T®)w* + (A)w*|| = [Ty

o By the Cauchy Shwarz inequality, ||(®7 ®)w*|| < afw*|| for

some o = ||(® 7 ®)||. Substituting in the previous equation,

(o + ) w] > [[®Ty]|

T
A [ yll
[lw |
Note that when ||w*|| — 0, A — oco. (Any intuition?) Using
lw*[? < € we get,



https://www.cse.iitb.ac.in/~cs725/notes/lecture-slides/tut3-solutions.pdf
https://www.cse.iitb.ac.in/~cs725/notes/lecture-slides/tut3-solutions.pdf

Bound on A in the regularized least square solution

[(®Td)w*|| < a|lw*|| for some « for finite |(dT d)w*|.
Substituting in the previous equation,

(o + M) [lw[| > [[oTy|

eyl
— w]
Note that when |[w*|| — 0, A\ — oco. (Any intuition?) Using
lw*[|? < € we get,
o7yl
V€

This is not the exact solution of A but the bound proves the
existence of A for some ¢ and ®.

A=




The Resultant alternative objective function

Substituting g(w) = ||w||2 — &, in the first KKT equation
considered earlier:

Ve (F(w) + A (w]? =€) =0
This is equivalent to solving
min(|| dw —y [[> +A || w [|?)

for the same choice of A. This form of regularized ridge regression
is the penalized ridge regression.



